当前位置:贤学网>范文>说课稿> 《三角形》说课稿

《三角形》说课稿

时间:2023-01-10 10:48:25 说课稿 我要投稿

人教版《三角形》说课稿

  作为一位优秀的人民教师,时常需要用到说课稿,通过说课稿可以很好地改正讲课缺点。那么什么样的说课稿才是好的呢?下面是小编整理的人教版《三角形》说课稿,欢迎阅读与收藏。

人教版《三角形》说课稿

人教版《三角形》说课稿1

  《三角形的内角和》说课稿

  一、 说教材:

  今天我说课的内容是小学数学人教版实验教材四年级下册的《三角形的内角和》。三角形的内角和是180°是三角形的一个重要性质,也是“空间与图形”领域中的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何知识的基础。三角形是常见的一种图形,在平面图形中,三角形是最简单的多边形,也是最基本的多边形。学生对三角形已经有了直观的认识,能够从平面图形中分辨出三角形,还认识了三角形的特性,知道三角形任意两边之和大于第三边以及三角形的分类等有关三角形的知识。这些都是学生感受、理解、抽象“三角形的内角和”的概念的基础。我们把握好“三角形的内角和是180°”这部分内容的教学不仅可以加深学生对三角形特征的理解,发展学生的空间观念,而且可以通过动手操作,获取新知,发展学生的思维能力和解决实际问题的能力。同时也为以后学习更复杂的几何图形知识打下坚实的基础。

  二、说教学目标:

  1、知识目标:知道三角形内角和是180°。

  2、能力目标:①通过学生测量、撕拼、折叠、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。

  ②能运用三角形内角和是180°这一规律解决实际问题。

  3、情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;

  ②体验探索的乐趣和成功的快乐,增强学好数学的信心。

  三、说重点和难点:

  重点:探索和发现三角形内角的度数和等于180°。

  难点:通过小组讨论、动手操作等方式,让学生自己探索和发现三角形内角的度数和等于180°,并能应用这一规律解决实际问题。

  四、说教法和学法

  新课程标准的基本理念就是要让学生“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验。因此,我主要采用的教学方法是:直观教学法和动手操作实验法。在教学中,根据学生的年龄特征,整节课我以学生为主的 “活动教学”贯穿全过程。设计有独立活动、同桌活动及分小组活动。在具体活动中,虽然小学生的遗忘性较强,但不得不承认学生已学过了三角形的内角和,所以一开始我大胆放手让学生说,从学生说中导入故事,“三角形三兄弟的争吵”,引出与学生要学习的内容——三角形的内角,然后设疑:三角形内角和是多少?由于学生在小学学过这样的知识,所以很轻松地就可以答出。所以我直接让学生分小组讨论:有什么办法可以验证得出这样的结论。让学生大胆猜想,自主探索三角形的内角和。再通过测量、拼折、验证等方式让学生确定三角形内角和是180度。这样,既培养了学生的观察能力和归纳概括能力,又培养了学生动手操作能力和创新精神。

  五、 说教学过程:

  本节课的教学过程我设计了六个教学环节:一是创设情境,导入新课;二是自主探究,证实规律;三是应用延伸,解决问题;四是深化思维,拓展知识;五是课堂总结;六是作业布置。下面就具体的教学环节说说我的.设想。

  (一)创设情境,导入新课:

  教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。开始上课,我就大胆放手让学生说三角形的特性、分类等有关知识,从学生说中导入故事,“三角形三兄弟的争吵”,引出与学生要学习的内容——三角形的内角和,然后设疑:三角形内角和是多少?从而激发学生探究数学的愿望和兴趣。

  (二)自主探究,证实规律:

  1、理解标目:学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,所以一开始我先不急于动手探索,先让学生明白什么是三角形的内角和。

  2、 猜想:目标明确后,我就让学生大胆猜想,形成统一的认识,使后边的探索和验证活动有了明确的目标。

  3、 验证{自主探索}:学生形成统一的猜想{即三角形的内角和等于180度}后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动{既验证三角形的内角和是否是180度?},在活动中,我既不像过去那样告诉学生怎么动手去验证,让学生做机械的操作员,不是随意放开让学生盲目的操作,而是把放和引有机的结合,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量量、拼一拼、折一折――说说、议议――小结。

  4、 巩固内化:俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用,如:根据普遍三角形两个角求一个角,根据特殊的三角形求出三角形的三个角的度数{具体在练习一,第二、应用延伸练习一中都有体现},从中发展学生的空间观念和空间想象能力。这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到不断的发展。

  5、 拓展创新:数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,我给学生出了一道通过对本节课所学知识的迁移就可以完成的问题,对学生进行思维训练,既培养了学生应用知识的能力,又培养了学生的创新意识和创新精神。

  6、说课堂总结

  采用用先让学生归纳补充,然后教师再补充的方式进行:⑴这节课我们学了什么知识?你有什么收获?(2)看书设疑。充分发挥学生的主体意识,培养学生的语言概括能力。

  六.说教学板书

  这是一节操作课,学生要掌握的概念较少,所以整个板书我以表格为主,主要把学生大量的验证成果展示出,让学生亲自动手后再通过观察,一目了然,得出结论——三角形的内角和是180度。简间但又层层涉及,形式活泼,色彩也较丰富。

  总之,本节课教学活动中我力求充分体现一下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。

人教版《三角形》说课稿2

  本节课我在设计时以问题作为教学的出发点,在设计教学方案时,不是直接以感知教材为出发点,而是把教材上外角和的知识改编成需要学生探究的问题,主要的活动是由学生动手操作剪纸发现问题、总结规律,激发学生的探究兴趣,让学生在尝试中体验和创新,使传统意义上的教学过程变成学生对数学问题进行探究、解决的过程。

  一、教材分析及教学目标

  本章的主要内容是三角形的有关概念及其边角的性质。这节课的重点是探索并掌握三角形的外角性质及外角和。在呈现方式上,改变“结论———例题———练习”的陈述模式,而是采用“问题———探究———发现”的研究模式,并采用多种探究方法:对“三角形外角性质及外角和”采用拼图、度量和数学说理的方法,放手让学生自己去总结发现问题。

  二、教学准备工作

  课前让学生准备好剪刀、硬纸板、量角器、三角板等工具。

  三、教学方法

  采取理论和实践相结合的方法。形式上以自主学习、合作研究为主,教师相辅引导,适时提示。

  四、教学时数

  1课时

  五、教具

  为增大课堂教学的容量和提高效率,采用多媒体辅助教学。

  六、教学过程

  (一)激情导入

  在一副图中找出三角形的外角、内角(相邻和不相邻)。观察图中外角和相邻内角的关系(之和等于180度。)然后提出疑问:外角和其它两个不相邻的内角又有什么关系呢?下面我们就来共同探讨一下这个问题,大家有没有信心学好呀?

  板书课题:三角形外角和

  (二)新课讲授:

  1、探究三角形外角的两条性质

  对于这一部分的教学我主要是让学生在动手拼图中总结规律,然后由小组讨论完成,或者引导学生思考发现这个规律,还有其他的方法吗?(比如用量角器度量等等)。然后让一名学生到展台展示。这样比较形象直观。

  探索出三角形外角的两条性质后,要针对性质再进行强调,尤其是个别关键字。教育大全

  2、探究三角形外角和定理。

  这一部分我先让学生动手剪纸拼图发现规律(或者用量角器度量),然后动画展示一下,这样更直观形象,最后上升到理论上进行推理,通过三角形内角和定理逐步引导学生得出外角和定理。

  本节课重点就是这两部分的内容,然后练习。我在设计练习时考虑由浅入深的原则:第一个练习题是有关内角和和外角和定理的比较简单的`求角的度数的问题;第二个练习是一道综合运用题,在做这个题目是我考虑到锻炼学生、培养学生能力这一点,我让一名学生到黑板上做然后把自己的思路讲给同学们。

  (三)小结

  回想一下我们这节课主要学习了哪些知识?可以是学习内容,也可以是学习态度上的等等,找几位同学谈谈。

  总之,我这堂课改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。改变课程内容“难繁偏旧”和过于注重书本知识的现状,加强课程内容与学生生活以及现代社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能。改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流合作的能力,合作的能力。

  力争为争取新课程评价标准下的高效益,做一名成功的“三型”式初中数学课改实验教师。

人教版《三角形》说课稿3

  一、教材解读:

  1、教材的内容:人教版实验教材四年级下册第五单元第三课时

  2、教材简析:三角形分类是在学生认识了直角、钝角、锐角和三角形的基础上开展学习的,教材分为两个层次:按角分为锐角三角形、钝角三角形和直角三角形,并通过集合图来体现分类的不重复和不遗漏原则;按边分为等腰三角形、等边三角形和一般三角形,着重引导学生认识等腰三角形、等边三角形边和角的特征。学好这部分知识为以后进一步学习三角形的有关知识打下基础。

  3、教学目标:

  (1)通过观察与操作,发现三角形中角与边的特征,学会按一定标准给三角形分类,感受三角形与日常生活的联系。

  (2)经历观察与探索的过程,培养学生观察分析,动手操作能力,进一步发展学生的空间观念。

  4、教学重点:学会给三角形分类。

  5、教学难点:找出三角形角与边的特征。

  6、教学准备:多媒体课件,各种不同的三角形纸片若干袋(每袋都一样),三角板,量角器,直尺、双面胶若干

  二、教学设想

  自主学习的过程实际就是教学活动的过程。以活动促学习是本节的教学定位。通过情景创设,学生经历探索发现、讨论交流、独立思考等活动,逐步建立对三角形角与边特征的认识。通过看一看、想一想、量一量、分一分、连一连、猜一猜等多种形式的学习,为学生提供更多数学对话的机会,通过教具、学具、多媒体的运用,让学生经历从现实空间到几何空间的抽象变化的过程,从而获得对三角形边、角特征的认识,进而学会给三角形分类。

  三、教法与学法

  教法:创设情景为自主探究搭建平台;积极引导为有效学习指明方向;主动参与为合作交流营造氛围;激励评价为主动学习鼓励加油。学法:观察分析在情景中提出问题;探索思考在操作中解决问题;分组交流在探索中理解问题;独立反思在总结中内化问题。

  四、教学流程

  1、情景导入。问:你能按一定标准给教室里的人分分类吗?利用学生身边的事物,往往更能激起学生的求知欲望。同时为多角度的给三角形分类作好铺垫。

  2、探索新知。出示一些三角形纸片,问:三角形有哪些特征呢?(三个角、三条边、三个顶点)手拿实物问:每个三角形的角和边一样吗?今天我们就根据三角形各自的边和角特征来分分类。学生动手探索分3个环节,前两个环节采用比赛的形式,促使学生考虑合理分工、团结合作,提高课堂效率。

  ①观察与测量。分给每个学习一袋三角形纸片、一张彩色纸板和双面胶(每个小组的三角形一样),引导学生在小组长的'带领下,进行观察、测量、记录各个三角形的特征。

  ②整理、分类。根据记录的数据,经过小组分析、讨论,将分类后的三角形贴在彩色板上。

  ③全班展示交流、师生点评。

  ④归纳小结。

  给出锐角三角形、直角三角形、钝角三角形的名称,找出不同点和相同点,出示集合图,讲解分类的不重复和不遗漏原则;给出等腰三角形、等边三角形的名称,找出它们的特征。

  3、巩固练习

  ⑴连一连。(课件出示)

  等腰三角形等边三角形锐角三角形钝角三角形直角三角形

  目的是让学生在练习中巩固各种三角形的特征,并利用这些特征给三角形分类。

  ⑵游戏,猜一猜。

  给出三角形的一个角或两个角,猜一猜可能是什么三角形?目的是让学生进一步巩固锐角三角形、直角三角形、钝角三角形的特征。深刻辨别它们之间的区别和联系。当学生感到有些疲劳时,这时我就根据教材内容和学生心理特点,采用游戏练习方式,增加题目的趣味性,激发学生的学习兴趣。

  ⑶判断。(课件出示)

  ①一个三角形里如果有两个锐角,必定是一个锐角三角形。()

  ②所有的等腰三角形都是锐角三角形。()

  ③所有的等边三角形都是锐角三角形。()

  目的是辩明概念。同时,要求学生用手势表示,能促使人人参与学习,达到面向全体的作用。

  ⑷填空。

  ①已知等腰三角形的两边长为4cm和5cm,则它的周长为()。

  ②已知等腰三角形的周长为17cm,其中一条边长为7cm,则它的其腰长为()。

  ③已知等腰三角形的两边长分别是4cm和8cm则它的周长为()。

  在巩固等腰三角形特征的同时又注重培养学生灵活运用所学知识解决问题的能力。

  4、全文小结:以谈收获和实际应用的方式结束。

人教版《三角形》说课稿4

  一、说教材

  《三角形的内角和》是人教版小学四年级下册的内容,“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。

  二、说学情

  本节课的教学是在学生已经认识了三角形、平角,学会测量角的度数及三角形的分类、已具备一定的探究经验和技能的基础上探索和发现三角形内角和等于180度,为理解三角形三个内角的关系以及在今后学习多边形内角和打下基础。

  三、说教学目标

  根据教材的特点,我制定出本节课的三维目标分别是:

  1、通过测量、撕拼、折叠等方法,探索和发现三角形内角和是180°。能运用新知识解决问题。

  2、在操作活动中,培养学生的合作意识、动手实践能力,发展学生的空间观念,培养学生自主探究能力。

  3、激发学生主动学习数学的兴趣,体验知识的形成过程,实现自主发展。

  四、说教学重点:

  探究和发现三角形内角和是180°

  五.说教学难点:

  用不同方法探究、验证三角形的内角和是180°

  六.说教学准备

  课件、学生准备不同类型的三角形各一个,长方形或正方形、剪刀、量角器。

  七、说教法学法

  这节课如果作为一般的讲授课教学,其实说来很容易,只需要告诉学生三角形的内角和是180度,学生记住这个结论就可以直接进行练习了。显然这种教学设计不符合新的教学理念 ,《新课程改革》指出:教师要从知识的传授者向学生学习活动的组织者引导者合作者转变,为了将这节课的目标真正的落到实处,我把这节课定性为“开放型探究课”,开展了一系列的数学探究活动,让学生在探究活动中亲身去体验知识的形成过程,从而实现自主发展。所以本节课我主要采用了以下几种教学方法:

  (1)、引导学生在合作中学习数学。例如:分小组测量三角形每个内角的度数并算出它们的总和。

  (2)、引导学生在探究中学习数学。例如:当同学们无法判断大小三角形的內角和谁大谁小时

  ,自己想办法进一步探究.

  (3)、引导学生在探究中完成归纳推理过程。例如:通过拼一拼、折一折、分一分等方法层层推进,这样由普通到特殊再到一般的推理过程.

  (4)、引导学生在归纳推理的基础上实现知识迁移。例如:当学生探究三角形的内角和之后,引导学生利用本节课所学知识进一步探究多边形的内角和。

  八、说教学流程

  学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下4个环节:

  1、创设情景,以情激趣

  首先上课一开始,我利用多媒体出示大小两个三角形为比谁的内角和大而争吵,让正方形来判断谁大谁小的教学情景,富有挑战性,充满了浓浓的吸引力,学生的好奇心好胜心让他们产生一种想立即判断出谁大谁小的强烈愿望,激发了学生的求知欲。为了加深对内角和意义认识和理解我把正方形巧妙的融入了情景中,为后来探究三角形的内角和度数做了铺垫。

  2、 合作交流

  探究新知

  这一环节的设计我是分4部分完成的:

  (1).量一量

  我紧紧抓住小学生强烈的好奇心,先引导他们用量角器量一量的方法去探究比较大小三角形的内角和,可能会出现大于180度、180度或小于180度不同的结果。在交流汇报的结果时会发现答案不统一,无法判断大小三角形内角和谁大谁小的问题。此时学生心中产生了更大的疑惑,“三角形的内角和到底是多少度?谁的答案正确呢?”这一思维的碰撞,再次激起学生的学习探究热情,自主产生探究欲望,强烈的求知欲和好胜心让学生跃跃欲试,此时我顺水推舟,引导他们用拼一拼、折一折等不同的方法探究不同的三角形的内角和是多少度。

  (2)、拼一拼、折一折

  学生已经学习了三角形有关知识,已具备一定的探究经验和技能。所以在自主探究和验证三角形的内角和是180

  度时,我充分调动学生学习的.积极性,挖掘他们的学习潜力,给他们提供充分自主探究和交流的时间和空间。引导他们利用手中的学具自己去研究,不做任何拼折方法的提示,不局限学生的思维方式,完全放手,选择自己喜欢的方法探究,同学们可能会用不同的方法进行剪拼、折拼,对他们的探究精神我都予以表扬和肯定。

  (3).得出结论、加深内化

  学生亲身经历探索、实验、发现、讨论、交流、验证等一系列的数学活动后,体会到:这些三角形的内角和是相等的。都是180度,并自主得出结论:三角形的内角和是180度。然后引导他们:用科学、简练的数学语言表述探究方法学生汇报并演示三角形内角和180度探究过程。并借助多媒体在大屏幕上演示其中几种基本的剪拼、折拼方法。学生通过动口表述,动手演示,观看验证、加深了他们对三角形内角和是180度的直观理解,更加深了对知识的内化。

  (4).揭示课题、解决问题

  在学生得出三角形的内角和是180度这一瓜熟蒂落,水到渠成的时候,我出示了本节课的课题。继而让学生对大小三角形内角和谁大谁小的问题作出判断:他们说的都不对,这两个三角形的内角和都是

  180度。在这个环节中,我自始至终充当教学研究的组织者,引导者,参与者。前后组织了几次自主探究活动,让学生在保持高度学习热情与欲望的探究过程中,始终以愉悦的心情亲身经历和体验知识的形成过程。培养了学生的探究能力、分析思维能力,激发了他们的创新意识、参与意识,体验成功的同时掌握和体会数学的学习方法,初步感知数学知识的科学性和严密性。在学生在探究中,实现自主体验,获得自主发展。,人教版小学数学第八册(三角形内角和)说课稿

  3、运用新知、解决问题

  本环节我设计了以下几种题型:1、推算题,2、辨析3思考题,4拓展题,这几种题型由简单到复杂,巩固了这节课学到的知识,也解决了一些实际的问题,最后一道实践活动让学生根据三角形的内角和探索经验去探索多边形的内角和,对知识进行了迁移,加深了知识的内化,更是学生通过自主体验获得知识自我建构的升华。

  4、了解历史 、全课小结

  这一环节我利用数学文化给学生介绍三角形的内角和180度的历史,旨在使学生了解数学知识的博大精深,领悟数学的学习方法,同时也是对本节课三角形的内角和是180度这一知识点作出小结。通过谈感想,增强学生学习数学知识的信心,也是对学生学习提出的希望:对待学习要有不断探索和创新的精神,只有亲身经历了知识的形成过程,学习效率才会更高!

人教版《三角形》说课稿5

  一、说教材

  (一)、内容:

  《三角形的特性》是人教版义务教育课程标准实验教科书80—81页内容,这部分内容包括三角形的定义,三角形各部分名称,三角形的稳定性等。学生通过上册对空间与图形内容的学习对三角形已有了直观认识,能够从平面图中分辩出三角形。例题1:是有关三角形定义的教学,着重是让学生在“画三角形”的操作活动中进一步感知三角形的属性。抽象出概念。例题2:着重于三角形的重要特性是“稳定性”,在生活中有着广泛应用。它可以让学对三角形有更为全面和深入的认识。同时有利于培养学生的实践精神和实践能力。

  (二)、教学目标:

  1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。

  2、通过实验,使用权学生知道三角形的稳定性及其在生活中的应用。

  3、培养学生观察,操作能力和应用数学知识解决实际问题。

  (三)、教学重点:理解三角形的特性。

  (四)、教学难点:在三角形内画高。

  二、说教法

  (一)、情境教学法。

  在特定的情境中进行学习,能激发学生兴趣,激活学生思维。为了解决问题,学生会主动探索新方法,从而将问题的解决和方法融为一体,这样安排有利于密切数学与生活的联系。

  (二)、操作讨论法。

  在动手操作,讨论交流时学生各抒己见,这样即启迪学生思维,又能增强其合作意识。学生动手、动脑,在探索发现问题的过程中解决问题,真正体现了以学生为主体的'教学理念,教师在课堂上起到了组织者,引导者与合作者的作用。

  三、说学法。

  (一)、自主探究《数学课程标准》指出有效的数学活动不能单纯地进行模仿与记忆,动手实践,自主探究与合作交流是学生学习数学的重要方法。因此在教学中我让学生通过动手实践,亲身体验。如:画一画、议一议、说一说等活动发现新知、建构新知,从而掌握新知,培养合作意识和探究品质,发展思维能力和解决问题的能力。

  (二)、学以致用,在学完新知后,我及时引导学生运用所学知识解决生活中的一些实际问题。这样,不仅增长学生智慧又使学生进一步感受到了数学与生活密不可分的关系,增强了学习数学兴趣和信心。

  四、说教学程序。

  (一)、联系生活,情境导入

  1、出示80页情境图,学生观察,发现描述三角形。

  2、说一说:生活中还有哪些物体上有三角形。

  3、课件出示生活中常见的物体上的三角形。

  4、导入并板书课题。

  (二)、操作感知,理解概念

  1、发现三角形的特征

  2、概括三角形的定义

  (1)、引导学生用自己的话概括什么叫三角形?

  (2)、议一议:下面的图形是不是三角形?

  (3)、讨论:哪种说法更准确?

  (4)、指导阅读80页“三角形”定义。

  3、认识三角形的底和高

  (1)、出示三角形屋顶的房子。(问:你能测出三角形房顶的高度吗?学生动手操作)。

  (2)、你是怎么测量的?(学生交流汇报)。

  (3)、讲解测量过程?(得出:三角形高、底的概念)。

  (4)、出示81页三角形(问:这是这个三角形的一组底和高吗?你还能画出其它的底和高吗?学生动手操作,然后评议交流)。

  4、拓展

  在三角形ABC中,以AB为底边的高是();以AC为底边的高是();以BC为底边的高是()。

  (三)、实验解疑,探索特性

  1、提出问题:出示81页插图,问图中哪里有三角形?生产生活中为什么要把这部分做成三角形呢?它具有什么特性?

  2、实验解疑

  (1)、学生拿出准备好的三角形、四边形学具分小组实验,拉一拉学具会有什么发现?

  (2)、得出结论:三角形具有稳定性。

  (3)、举例说出生活中应用三角形稳定性。

  (四)、巩固运用,提高认识

  课件出示练习十四:1、2、3题

  (五)、总结评价,质疑问难

  1、本节课学习了什么内容?

  2、你对三角形有了哪些认识?

人教版《三角形》说课稿6

  一、说教材、学情分析

  我说课的内容是《三角形面积计算》。它位于义务教育课程标准实验教科书五年级上册第84--86页。本节内容是在学生充分认识了三角形的特征以及掌握了长方形、平行四边形面积计算的基础上安排的。其推导方法与平行四边形面积公式的推导方法有相通之处。同时本课也是学习梯形、组合图形面积的基础,在实际生活中这部分的应用也非常广泛,所以本课内容的学习是很重要的。

  学情分析

  是在学生掌握图形的特征和长方形、正方形、平行四边形面积的计算的基础上学习的。学生由于有平行四边形面积公式的推导经验,必然会产生:能不能把三角形也转化成已学过的图形来求它的面积呢?从而让学生自己找到新旧知识间的联系,使旧知识成为新知识的铺垫。

  二、教学目标:

  1、使学生理解和掌握三角形面积计算的公式,能够应用公式计算三角形的面积;并能应用公式解决简单的实际问题。培养学生应用已有知识解决新问题的能力。

  2、经历探索三角形面积计算方法的过程,培养学生抽象概括的能力。

  3、在解决实际问题的过程中体验数学与生活的联系,进一步培养学习数学的兴趣。通过学习例2,使学生认识红领巾的意义,接受爱国教育。

  三、教学重点难点:

  重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。

  难点:理解三角形面积是同底(长)等高(宽)长方形面积的一半。

  四、说教法、学法:

  教法:由于小学生的认知规律是从具体到抽象,他们有好奇好动的特点。在教学中我采用情境教学法、探究法、实验法、以及多媒体辅助教学等方法充分调动学生的主观能动性,力求体现自主性教学原则。

  学法:根据本课可操作性的`特点,以及学生为主体,教师为主导的教学原则,在学法指导上以学生动手操作为主,配以小组合作学习法,讨论法进行自主探究式学习。

  五、教学准备

  多媒体课件;学具袋(内有两个完全一样的直角三角形、锐角三角形、钝角三角形,一个长方形,一个平行四边形,任意三角形3个),剪刀一把。

  六、教学过程

  认真研究分析教材,从学生的生活经验和已有知识背景出发,设计了以下教学环节:

  (一)、创设情境,揭示课题

  1、我们学校一年级有一批小朋友加入少先队组织,学校做一批红领巾,要我们帮忙算算要用多少布,同学们有没有信心帮学校解决这个问题?同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?我利用学生熟悉的红领巾实物,以及帮学校计算要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,从而将“教”的目标转化为学生“学”的目标。还调动了学生学习的积极性,激发了学生的探究欲望。

  (二)主动探究,获取新知。

  如果学生会说我知道底乘高除以二,其实学生在没有师讲授的时候就了解三角形的面积公式不足以为奇,关键是师要继续追问下去为什么是底×高÷2,这才是我们这节课要解决的重点问题,所以我们在学生预习的基础上调整了教学的顺序,教学的要求由师的教变成了学生自主验证,让学生充分感觉自己是课堂的主人,这样做更激会发学生的求知欲。只有学生亲身经历、感受的东西才能真正理解和掌握。这里,我没有采用传统“省时高效”直接告诉学生答案的方法,而是让学生利用手中学具,动手操作,拼一拼,剪一剪,有的学生根据上节课学的知识,在学习平行四边形面积计算时学生做过这样的题,学生把平行四边形沿对角线剪成两个相等的三角形,学生很快说出平行四边形面积是三角形面积的2倍,三角形面积是平行四边形面积的一半。板书:三角形的面积=平行四边形的面积÷2。有的学生用两个完全相同的直角三角形拼成一个长方形,将三角形转化成我们已经学习的平长方形进行计算,还有的用锐角三角形拼成平行四边形。这个时候师的作用就是要引导学生观察一个三角形与拼成的平行四边形之间的关系,拼成的平行四边形的底等于三角形的底,平行四边形的高等于直角三角形的高。再次提出挑战性问题:那么锐角三角形、钝角三角形与平行四边形之间是否也有这样的关系呢?同学们想不想亲自来验证一下?再次激发学生的探究欲望。此环节采用小组合作,自由发挥,自主探索,使学生成为课堂的主人。最后每个小组选代表边演示边汇报探究结果。此时我再次提出疑问,三角形只能拼成平行四边形、长方形吗,还能拼成别的图形吗?学生想到了直角等腰三角形,马上拼成了正方形。通过学生动手操作和学习,他们对三角形面积公式理解得更加透彻,然后引导学生说出:用字母表示三角形面积的计算公式。

  (三)实践运用、拓展创新

  在练习部分我安排了四方面的内容:

  1、基础练习

  引导学生直接运用所学知识来解决红领巾的问题。

  2、解决问题

  请同学们说一说你们认识下面这些道路警示标志吗?

  如果制作一个这样的道路警示标志需要多少铁皮?从而使学生感受到数学源于生活。又对学生进行安全教育。

  3、变相练习

  我设计了经常出的判断题让学生练习,加深学生的认识,巩固所学的知识

  (四)、回顾总结,深化提高:

  通过这节课的学习你有哪些收获?再次把学习的主动权交给学生,培养学生综合概括能力和语言表达能力。

  板书设计:

  三角形的面积

  因为:平行四边形的面积=底×高,

  三角形面积=拼成的平行四边形面积÷2例1……

  所以:三角形面积=底×高÷2S=ah÷2

  S=ah÷2=100×33÷2

  课后反思:

  通过本节课的学习,落实了“以学生为本”,重视学生的自主探究、创新精神和实践能力的培养。教学的各个层次做到了生生互动。充分利用学生动手剪一剪、拼一拼、议一议,学生验证两个完全一样的三角形都能拼成一个平行四边形,借助已有的知识来发现自己的创新,从而得出结论:三角形的面积=底×高÷2。在实践的过程中把知识点突破、解决、掌握,并培养了学生的思维能力,也博得了学生的较高兴趣,课堂氛围也活了起来。课堂中渗透“新课标”精神,真正体现学生是学习的主人。在实际的练习中发现有个别学生对三角形的面积公式中的“÷2”总是忘记,还有的学生弄不清楚三角形的高。

人教版《三角形》说课稿7

各位评委、老师大家好:

  我说课的题目是《三角形内角和》,内容选自人教版九年义务教育七年级下册第七章第二节第一课时。

  一、设计理念:

  数学是人与人之间精神层面上进行的交往。课堂教学中的交往主要是教师与学生、学生与学生之间的交往。它需要运用“对话式”的学习方式,采取多种教学策略,使学生在合作、探索、交流中发展能力。新课程中对学生的情感、体验、价值观,以及获取知识的渠道都有悖于传统的教学模式,这正是教师在新课程中寻找新的教学方式的着眼点。

  应该说,新的教学方式将伴随着教师对新课程的逐渐透视而形成新的路径。要破除原有教学活动的框架,建立适应师生相互交流的教学活动体系;满足学生的心理需求,实现教者与学者感情上的融洽和情感上的共鸣;给学生体验成功的机会,把“要我学”变成“我要学”。

  我认为教师角色的转变一定会促进学生的发展、促进教育的长足发展,在未来的教学过程里,教师要做的是:帮助学生决定适当的学习目标,并确认和协调达到目标的最佳途径;指导学生形成良好的学习习惯,掌握学习策略;创造丰富的教学情境,培养学生的学习兴趣,充分调动学生的学习积极性;为学生提供各种便利,为学生的学习服务;建立一个接纳的、支持性的、宽容的课堂气氛;作为学习的参与者,与学生分享自己的感情和想法;和学生一道寻找真理,能够承认自己的过失和错误。教学情境的营造是教师走进新课程中所面临的挑战,适应新一轮基础教育课程改革的教学情境不是文本中的约定,也不是现成的拿来就能用的,需要我们在教学活动的全过程中去探索、研究、发现、形成。

  二、教材分析与处理:

  三角形的内角和定理揭示了组成三角形的`三个角的数量关系,此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。

  三、学生分析:

  处于这个年龄阶段的学生有能力自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身使用,贴近生活实际的数学建模问题,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。

  四、教学目标:

  1.知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。

  2.能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。

  3.德育目标:通过添置辅助线教学,渗透美的思想和方法教育。

  4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。

  五、重难点的确立:

  1.重点:三角形的内角和定理探究与证明。

  2.难点:三角形的内角和定理的证明方法(添加辅助线)的讨论

  六、教法、学法和教学手段:

  采用“问题情境-建立模型-解释、应用与拓展”的模式展开教学。

  采用对话式、尝试教学、问题教学、分层教学等多种教学方法,以达到教学目的。

  七、教学过程设计:

  (一)、创设情境,悬念引入

  一堂新课的引入是老师与学生交往活动的开始,是学生学习新知识的心理铺垫,是拉近师生之间的距离,破除疑难心理、乏味心理的关键。一个成功的引入,是让学生感觉到他熟知的生活,可使学生迅速投入到课堂中来,对知识在最短的时间内产生极大的兴趣和求知欲,接下来教学活动将成为他们乐此不疲的快事了。

  具体做法:抛出问题:“学校后勤部折叠长梯(电脑显示图形)打开时顶端的角是多少度呢?一名学生测出了两个梯腿与地面的成角后,立即说出了答案,你知道其中的道理吗?”待学生思考片刻后,我因势利导,指出学习了本节课你便能够回答这个问题了。从而引入新课。

  (二)、探索新知

  1.动手实践,尝试发现:要求学生将事先准备好的三角形纸板按线剪开,然后用剪下的∠A、∠B与完整的三角形纸板中的∠C拼图,使三者顶点重合,问能发现怎样的现象?有的学生会发现,三者拼成一个平角。此时让学生互相观察拼图,验证结果。从观察交流中,互学方法,达到生生互动。待交流充分,分小组张贴所拼图形,教师点评,总结分类,将所拼图形分为∠A、∠B分别在∠C同侧和两侧两种情况。对有合作精神的小组给与表扬。

  (将拼图展示在黑板上)

  2.尝试猜想:教师提问,从活动中你有怎样的发现?采取组内交流的方式,产生思维碰撞。此时我走到学生中去,对有困难的小组给与适当的引导。之后由学生汇报组内的发现。即三角形三个内角的和等于180度。

  3.证明猜想:先帮助学生回忆命题证明的基本步骤,然后让学生独立完成画图、写出已知、求证的步骤,其他同学补充完善。下面让学生对照刚才的动手实践,分小组探求证明方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到证明的切入点,体验成功。对有困难的学生要多加关注和指导,不放弃任何一个学生,借此增进教师与学有困难学生之间的关系,为继续学习奠定基础。合作探究后,汇报证明方法,注意规范证明格式。此处自然的引入辅助线的概念。但要说明,添加辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。

  4.学以致用,反馈练习

  (1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度数?

  解:∵∠A+∠B+∠C=180°(三角形内角和定理)

  ∴∠B+∠C=100°在△ABC中,

  (2)已知:∠A=80°,∠B=52°,则∠C=?

  解:∵∠A+∠B+∠C=180°(三角形内角和定理)

  又∵∠A=80°∠B=52°(已知)

  ∴∠C=48°

  (3)在△ABC中,已知∠A=80°,∠B-∠C=40°,则∠C=?

  (4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度数?

  (5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度数?

  解:设∠A=x°,则∠B=3x°,∠C=5x°

  由三角形内角和定理得,x+3x+5x=180

  解得,x=20

  ∴∠A=20°∠B=60°∠C=100°

  (6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度数?(2)若BD是AC边上的高,∠DBC的度数?

  第(6)题是书中例题的改用,此题由辅助线辅助课件打出,给学生以图形由简单到繁的直观演示。

  通过这组练习渗透把图形简单化的思想,继续渗透统一思想,用代数方法解决几何问题。

  5.巩固提高,以生为本

  (1)如图:B、C、D在一条直线上,∠ACD=105°,且∠A=∠ACB,则∠B=——度。

  (2)如图AD是△ABC的角平分线,且∠B=70°,∠C=25°,则∠ADB=——度,∠ADC=——度。

  本组练习是三角形内角和定理与平角定义及角平分线等知识的综合应用.能较好的培养学生的分析问题、解决问题的能力,有助于获得一些经验。

  6.思维拓展,开放发散

  如图,已知△PAD中,∠APD=120°,B、C为AD上的点,△PBC为等边三角形。试尽可能多地找出各几何量之间的相互关系。

  本题旨在激发学生独立思考和创新意识,培养创新精神和实践能力,发展个性思维。

  (三)、归纳总结,同化顺应

  1.学生谈体会

  2.教师总结,出示本节知识要点

  3.教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。

  (四)、作业:

  1、必做题:习题3.1第10、11、12题

  2、选做题:习题3.1第13、14题

  (五)、板书设计

  三角形内角和

  学生拼图展示

  已知:

  求证:

  证明:

  开放题:

人教版《三角形》说课稿8

  一,说教材

  (一)教材的地位和作用

  《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义。

  (二)教学目标

  基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

  1。通过量一量;算一算;拼一拼折一折的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。

  2。通过把三角形的内角和转化为平角进行探究实验,渗透转化;的数学思想。

  3。通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。

  (三)教学重,难点

  因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是内角的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。

  二,说教法,学法

  本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。

  因为《课程标准》明确指出要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从猜测――验证展开学习活动,让学生感受这种重要的数学思维方式。

  三,说教学过程

  我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。

  引入

  呈现情境:出示多个已学的平面图形,让学生认识什么是内角;。( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题。

  【设计意图】让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的横空出现

  猜测

  提出问题:长方形内角和是360°,那么三角形内角和是多少呢

  【设计意图】引导学生提出合理猜测:三角形的内角和是180°。

  (三)验证

  (1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度

  (2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。

  (3)折—拼:把三角形的'三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。

  (4)画:根据长方形的内角和来验证三角形内角和是180°。

  一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。

  【设计意图】利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系

  起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥。

  深化

  质疑: 大小不同的三角形, 它们的内角和会是一样吗

  观察指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变。)

  结论: 角的两条边长了, 但角的大小不变。因为角的大小与边的长短无关。

  实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小。这样多次变化, 活动角越来越大, 而另外两个角越来越小。最后, 当活动角的两条边与小棒重合时。

  结论:活动角就是一个平角180°, 另外两个角都是0°。

  【设计意图】小学生由于年龄小, 容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用角的大小与边的长短无关的旧知识来理解说明。

  对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因。

  (五)应用

  1。基础练习:书本练习十四的习题9,求出三角形各个角的度数。

  2。变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗3。(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少

  (2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少

  4。智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题

  【设计意图】习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。

  第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。

  第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。

  第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。

  第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。

  第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。

  第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。

  第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。

  第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。

【《三角形》说课稿】相关文章:

《三角形认识》说课稿11-19

三角形的认识说课稿07-04

全等三角形说课稿02-21

相似三角形说课稿11-12

《三角形的面积》说课稿12-02

《三角形特性》说课稿12-08

《全等三角形》说课稿01-06

《三角形内角和》说课稿07-13

三角形的内角和说课稿11-06

Copyright©2003-2024xianxue.com版权所有