八年级数学说课稿模板集合10篇
作为一位优秀的人民教师,就不得不需要编写说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。那么优秀的说课稿是什么样的呢?下面是小编精心整理的八年级数学说课稿10篇,仅供参考,大家一起来看看吧。
八年级数学说课稿 篇1
对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教学背景、教法学法、教学过程、教学设计说明四个方面具体阐述我对这节课的理解和设计。
1、教材的地位和作用
本节内容分两课时完成。我设计的是第一课时的教学,主要内容是分式概念、掌握分式有意义,值为0的条件。因为它是在学生学习了分数、整式及因式分解的基础上,又一代数学习的基本内容,是小学所学分数的延伸和扩展,而学好本节课,为今后继续学习分式、函数、方程等知识作好铺垫,特别是对“分式有无意义的讨论”为以后学习反比例函数作了铺垫。因此它起着承上启下的作用。
2、教学目标
一节课的教学目标准确与否,直接关系到这节课的整体设计,关系到学生发展的水平和教学效果的好坏,因此预设教学目标时,我力求准确。依据新课程的要求,我将本节课的教学目标确定为以下3个方面:
(1)知识与技能目标:让学生经历用分式表示现实情境中数量关系的过程,从而了解分式概念,学会判别分式何时有意义,进一步培养学生代数表达能力和分析问题、解决问题的能力、以及创新能力。
(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3)情感与态度目标:通过丰富的数学活动,使学生获得成功的经验,体验数学活动充满探索和创造,体会分式的模型思想,培养学生的辩证唯物主义观点。
3、教学重难点及关键:
分式概念是《分式》这一章学习的起点和基础,因此我把理解分式的概念确定为本节课的教学重点。又由于初中学生的认知结构中存在着这样的障碍:不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分式有意义、分式的值为0时的条件,自然就成了本节课的教学难点。而部分学生容易忽视分式的分母值不能为0这个条件,因此我认为突破这个难点的关键是通过类比分数的意义,加强对分式分母值不能为0的理解。
一、教法学法分析
1、学情分析
由于我校八年级学生,基础比较扎实,学习能力较强。通过小学分数的学习,学生头脑中已经形成了分数的相关知识。学生可能会用学习分数的思维去认识、理解分式。但是分式的分母不再是具体的数,而是抽象的含字母的整式,会随着字母的取值的变化而变化。为了帮助学生确实掌握所学内容,我在教学过程中特别设置了巩固性练习,对于教材中的例题和习题将作适当的延伸和拓展及变式处理.
2.教学方法:
针对本班学生情况,为了适合学生已有的认识水平和认知规律,更好地突出重点、化解难点,在教学过程中,我采用“引导——发现式教学法”,引导学生运用类比的思维方法进行自主探究. 在实施教学的过程中注意学生分析问题、解决问题等能力的培养。让学生全面地掌握分式的意义,体会到数学不是一门枯燥的学科,对学习数学充满信心。为了提高课堂效果,适当的辅以多媒体技术, 激发学生的学习兴趣,同时也增大教学容量,提高教学效率。
3.学法指导
观察、概括、总结、归纳、类比、联想是学法指导的重点。
在课堂教学中,不是老师单纯的传授知识,而是在老师指引下让学生自己学。要把教法融于学法中,在学法中体现教法。在活动过程中,我将引导学生体会用类比的方法,扩展知识的过程,培养他们学习的主动性和积极性。让学生通过对问题的讨论归纳,在与老师的交流中学习知识,从而达到 “学会”和 “会学”的目的。
二、教学过程(多媒体教学)
《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”在教学过程中,我充分考虑到如何更多地向学生提供从事数学活动的机会,坚持以知识为载体,思维为主线,能力为目标的设计原则, 所以我将本节课的教学过程设为以下六个环节:
第一环节是“创设情景、提出问题 ”:为了引导学生从自己熟悉的生活背景中发现、掌握和运用数学,在现实情境中进一步理解用字母表示数的意义,在这一环节里我设计一道有关四川汶川特大地震捐款的事例,并设置了6个问题。从学生熟悉的`整式及其运算入手,引导学生从旧知中去发现分式,找到新知的“生长点”和学生思维的“最近发展区”,从而更好地进行分式概念的建构活动。落实教学目标。
针对学生的发现,在第二个环节 “类比联想 形成概念”
我将采用“议一议”的方式引导学生继续观察新式子的特征,类比分数,合理联想。从而使学生水到渠成地概括出分式的概念及一般表示形式。
第三环节“指导运用 巩固概念”
通过小组内互举例子,互说判定过程,鼓励学生积极参与活动,在活动过程中强化分式概念,并及时纠正学生可能因分数负迁移所造成的认知障碍,注意辨析 与 的本质区别和 不是分式的问题,指出判断一个代数式是不是分式,不是决定于这个式子里是否含分数线,关键要看分母中是否含有字母。最后指出“整式和分式统称为有理式”。同时还让学生明白:分数线具有 (1)表示括号;(2)表示除号双重意义。
到此学生对分式的概念有了初步的认识,但并不完整。接下来如何识别分式有意义,是本节课的难点,也是探究学习的好素材。课本中分式有意义的条件是直接给出的,而我在以往的教学中发现学生往往忽视这个条件或是对分母整体不为零认识模糊,为了更好地突破难点,
我在第四环节“循序渐进 再探新知”
创设了以下活动供学生自主探究分式有意义的条件:
首先是组织学生独立填写表格:
表格的设计,是为了让学生通过对分式中的字母赋值,将“代数化”了的分式还原为他们熟悉的分数。通过填表,不同层次学生的发现将会有差异,此时正是倾听与交流的好时机,通过互相说服和推广,他们最终会达成共识:分式的值与字母取值有关,分式并不都有意义。继而引导学生通过再次类比分数,将陌生问题向熟悉问题转化,自主得出“分式有意义”的条件,建立完整的分式概念,同时渗透从特殊到一般的数学思想。
我抓住这一契机,给出:
(2)、概括分式在什么条件下有意义(对一般表达式 里的分母B作出取值限定:B不能等于零)为了能让学生对刚获得的新知识进行最基本的应用,在这一环节我安排了例题1是一个有关分式求值及判别分式何时有意义的问题,比较简单,可以由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生特别是学有困难的学生都能达到基本的学习目标,获得成功感。
我又顺水推舟,再给出以下分式,让学生讨论,(实践练习1):当x取什么值时,下列分式有意义?你知道吗?(采用组内合作然后组间抢答的形式。)(1)、 (2)、 (3)、 接下来,我又乘胜追击,问学生:(变式练习):那么以上各分式,当 取什么值时,分式无意义?
几个问题由浅入深、由易到难,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,消化知识。
(五)、变式延伸,进行重构
在掌握了如何求当未知数取什么值时,分式是有意义还是无意义以后,我将带领学生进入本节课的另一个难点,对学生来讲思维又将象每个跳动的音符一样活跃起来了。我问学生:例2:同样的,以上各分式,当 取什么值时,分式的值为零?
由于学生对新概念的理解在本质方面还是肤浅的,很多学生可能只考虑满足分子为零即可,所以我给学生几分钟的讨论时间,这时就有考虑问题较周到的学生通过(2)(3)两个题发现问题并不是那么简单,找出了症结。这样我就能及时的对症下药,指出“分式的值为零必须在分式有意义的前提下进行的。因此,分式的值为零必须满足两个条件:
(1)、分子的值为零;(2)、同时分母的值不等于零。从而进一步改善学生原有的认知结构
为了使这堂课所学到的知识与技能,顺利地纳入他们已有的知识结构中,
所以在接下来的第(六)环节“ 巩固深化 分层作业”里,我将引导学生反思:我们是如何得到分式概念的?分式和我们以前学过的什么知识有联系?我们用了哪些方法进一步揭示了分式意义的本质?在以上的学习过程中你的收获有哪些?最后教师整理学生的发言,归纳小结:
A、分式是两个整式相除的商,分数线可以理解为除号,并含有括号的作用.
B、分式的分子可以含有字母,也可以不含有字母,但分母必须含有字母.
C、分式分母的值不能为0,否则分式无意义.
D、分式的值要为0,需满足的条件是:分子的值等于0且分母值不为0
E、有理数的分类(有理数包括整式和分式)。
(2)、作业布置
(设计意图)考虑到学生的个体差异,以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。其中有一题自编涉及用分式表示数量关系的实际问题的题型。这样设计对学生是个挑战,可以激发他们的思维和兴趣,通过这样的逆向思维,可以更好地发展学生的数感、符号感,同时培养学生的创新意识。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。
三、教学设计说明
回顾整节课的设计,我主要着力于以下三个方面:
(一)、关于教材处理:认真处理教材,目的只有一个——为我的学生尽可能多地提供参与活动的机会,在本节课中主要体现在以下几点:
1、通过创设情景、引导学生观察、类比;联想已有知识经验;分析新的问题等活动,让学生充分感受知识的产生和发展过程,让学生始终处于积极思维状态之中。
2、通过分式概念、分式有意义的条件等探究活动,让学生亲历发现事物特征、规律的过程,激发学生的学习兴趣,增强自信心,引发自行学习的内在动机。
3、在学生学习了分式的概念后,通过一组由浅入深、由易到难的题组(例题及变式训练),逐题递进,落实本节课的教学难点。在教学形式上采用学生“互举例子、组内合作、组间抢答等多种方式,激活学生的思维,营造良好的课堂氛围。
4、问题设计注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展
5、小结部分通过师生共同反思,目的是为了更好地促进新旧知识之间的联系,使新知识与学生头脑中原有的旧知识建立逻辑性的稳固联系,从而形成新的认知结构。
6、通过创设开放性问题发展学生的创造性思维能力。根据学生的个性差异,遵循因材施教的原则,设计分层作业,使不同层次的学生都能通过作业有所收获。
(二)、关于教与学方法的选择:我在设计中始终关注:如何精心组织,让学生在丰富的活动中探索、交流与创新,因此我选择了“引导—发现教学法”,具体做法如下:
(1)、应用数、式通性的思想,类比分数,引导学生独立思考、小组协作,完成对分式概念及意义的自主建构,突出数学合情推理能力的养成;
(2)、加强应用性,通过再探新知、变式延伸两个环节,发展数学应用意识,突出分式的模型思想。
(三)、关于评价:学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情.我在活动中注重运用态势、语言对学生进行即兴评价,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。
总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。
八年级数学说课稿 篇2
一、教学目标
1.使学生能够利用积的算术平方根的性质进行二次根式的化简与运算.
2.会进行简单的二次根式的乘法运算.
3.使学生能联系几何课中学习的勾股定理解决实际问题.
二、教学重点和难点
1.重点:会利用积的算术平方根的性质化简二次根式.
2.难点:二次根式的乘法与积的算术平方根的关系及应用.
重点难点分析:
本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简.积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础.二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起.
本节难点是二次根式的乘法与积的算术平方根的关系及应用.积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识.要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。综合应用性质或乘法公式时要注意题目中的条件一定要满足.
三、教学方法
从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法.
1. 由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开.在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。
2. 积的算术平方根的性质和 ( )及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要
的作用,所以在教学中对于培养的思维品质有着重要的作用。
四、教学手段
利用投影仪.
五、教学过程
(一)引入新课 观察例子得到结果
类似地可以得到:
由上一节知道一般地,有=(a,b)
通过上面的例子,大家会发现 =(a,b) 也成立
(二)新课
积的算术平方根.
由前面所举特殊的例子,引导学生总结出:一般地,有 (a≥0,b≥0). 积的算术平方根,等于积中各因式的算术平方根的`积.
要注意a≥0、b≥0的条件,因为只有a、b都是非负数公式才能成立,这里要启发学生为什么必须a≥0、b≥0.在本章中,如果没有特别说明,所有字母都表示正数,下面启发学生从运算顺序看,等号左边是将非负数a、b先做乘法求积,再开方求积的算术平方根,等号右边是先分别求a、b的两因数的算术平方根,然后再求两个算术平方根的积.根据这个性质可以对二次根式进行恒等变形。 化简,使被开方数不含完全平方的因数(或因式):
1、 2、 3、
说明:1、当所得二次根式的被开方数的因数(式)中,有一些幂的指数不小于2,即含有完全平方的因式(数),我们就可利用积的算术平方根的性质,并用=a(a)来化简二次根式。
2、 (a≥0,b≥0)可以推广为 (a≥0,b≥0,c≥0)
化简二次根式的步骤
1、将被开方数尽可能分解出平方数;
2、应用=(a,b)
3、将平方项利用=化简
小结:1、积的算术平方根与二次根式的乘法的互逆性;
2、灵活应用他们进行二次根式的乘法运算及化简二次根式
作业;由于本节课后习题较少,可适当补充紧贴教材的课外习题
八年级数学说课稿 篇3
一、教材分析
1、教材的地位和作用
本课位于苏科版义务教育课程标准实验教科书八年级下册第十章第四节第一课时。主要内容是探索三角形相似的条件,并利用两个角对应相等来判断两个三角形相似,它是三角形的重要基础知识,学习本节内容,既巩固了前面学习的三角形全等和相似三角形的性质,又为后面学习三角形相似的其他方法打下了坚实的“基石”,起到了承上启下的作用。
2、教学目标
(1)知识目标:探索探索三角形相似的条件,并利用两个角对应相等来判断两个三角形相似。
(2)能力目标:通过通过观察、思考探索,小组合作等活动归纳出有两个角对应相等的两个三角形相似,培养宪政“转化”的数学思想方法,提高学生动手和解决实际问题的能力。
(3)情感目标:让学生感受数学与生活的紧密联系,体会数学的价值,培养学生敢想、敢说、敢做的学习习惯和团队协作,勇于创新的精神。
3、教学重、难点
重点:通过探索活动归纳出三角形相似的条件,并运用条件解决实际问题。
难点:三角形相似的探索,特别“对应”的理解。
二、教学方法
根据新课标的要求以及八年级学生的认知水平,贯穿于本节课教学环节的主线是:观察---探究-----讨论----归纳-----巩固展示,采用启发式和师生互动式教学方式,同时利用课件辅助教学来突破重难点。
三、学法指导
(1)八年级学生已经学习了三角形全等和多边形相似,在学习本节内容时,对“相似”和“全等”易混淆,在教学过程中要简单明白、深入浅出的分析。
(2)八年级学生总体较好动,且喜欢表达自己的观点,所以在教学过程中要想方设法将学生的注意力集中到课堂中来,更多地创造条件和机会让学生发表自己的见解,充分发挥学生的主体作用。
四、教学流程
1、创设问题,引入新课 (5分钟)
问题:课本第94页,思考……………….
在这一环节中老师应注重:(1)复习:三角形全等的条件 (2)多边形相似的条件,强调边对应,角对应。
(3)相似三角形的性质;对应角相等,对应边成比例。
2、学生活动,探究新知 (10分钟)
学生活动1:课本第94页,思考:(1)如何画出三个三角形(2)三角形(1)与三角形(2)全等吗?由学生表述并书写。
学生活动2:(1)师提问:根据多边形相似的条件,你能判断三角形(1)与三角形(3)相似吗?引导学生从对应角相等、对应边成比例这两方面思考
(2)学生测量、计算、思考、探究……………………
(3)学生回答…………………
师生共同归纳本节课知识点1:
如果说一个三角形与另一个三角形有两个角对应相等,那么这两个三角形相似
数学语言:在△A“B”C“与△ABC中,若∠A“=∠A,∠B”=∠B,
则△A“B”C“∽△ABC
在这一环节中教师应注重:(1)学生对“对应”的.把握 (2)不断激发学生思考和回答问题的积极性,并适当运用“不错”“很好”等话语来激励学生。 (3)学生的合作交流、讨论的能力和质量如何。
3、例题分析、讲解 (10分钟)
例1:课本第94页:例1 例2:课本第95页:例2
在这一环节中教师应注重:(1)在已知题知中如何寻找两个对应角相等 (2)进行规范的板书
学生活动3:课本第95页:思考:……………..
此环节由学生分析并书写出规范的推理过程
师生共同归纳本节课知识点2:平行于三角形一边的直线和其他两边的延长线相交,所构成的三角形与原三角形相似
4、趁热打铁,巩固新知 (10分钟)
本环节设计4小题,为课本第95页到96页练习1—4题,由学生单独思考并书写推理过程
在这一环节中,教师应注重:
(1)深入学生中,观察学生的分析过程是否合理,书写是否规范
(2)帮助学习能力较差的学生,并适时表扬书写规范,说理清楚的学生,通过肯定学生让学生感受到成功的喜悦。
5、学生成果展示 (6分钟)
展示内容与方法:巩固练习的4小题,在展台上进行分析过程并强调如何规范书写,教师和其他学生进行适当补充和肯定。
6、总结新知,强调数学思想方法 (3分钟)
设问法,学习了本节课你有什么收获?
在这一环节中,教师应注重:(1)学习小结的知识内容 (2)在能力和情感方面有什么提高和体会,这与“三维目标”相呼应。(3)教师强调数学思想方法:转化,将陌生的知识转化为熟悉的,将未知的转化为已知的。
7、布置作业(1分钟)
作业在讲学稿上,分为必做题和选做题,体现分层教学和分层作业的理念。
8、板书设计
(1)两个三角形相似的条件:文字语言和数学语言
(2)例题讲解 例1: 例2:
(3)平行于三角形一边的直线和其他两边的延长线相交,所构成的三角形与原三角形相似
八年级数学说课稿 篇4
1.这一节课的设计是建立在学生已有的知识经验基础之上,利用多媒体演示,通过猜测、分组讨论、动手作图等方式帮助学生在探索图形变换和坐标变化之间关系的过程中,获得数学知识。
2.教学过程中注重激励学生的学习热情,注重过程评价,注重发现问题与解决问题评价。鼓励学生动脑、动手、动口,积极交流讨论。
3.通过这节课的学习,学生初步掌握了探究数学问题的基本方法,了解怎样建立数学模型解决实际问题,学会从生活中去发现数学,去找到数学的'美,把数学和生活紧紧联系在一起,让学生体会到数学形象生动的一面。
4.存在问题:由于学生还没有经历过图形相似的学习,对于图形的拉伸和压缩可能有一定的难度。解决办法:让学生充分交流讨论,积极动手去验证,自己得出结论,加深他们对这一知识的理解。
八年级数学说课稿 篇5
尊敬的各位评委、各位老师:
大家好!今天我说课的题目是《整式的乘法》,下面我就教材、教法与学法指导、教学设计和教学反思四个方面来向大家介绍一下我对本节课的理解与设计。
一、说教材:
1、教材的地位与作用:本节课是学生在学习了单项式乘以单项式、单项式乘以多项式之后安排的内容,既是单项式与多项式相乘的应用与推广,又为今后学习乘法公式作准备。同时,还可以激发学生对数学问题中蕴含的内在规律进行探索的兴趣和培养学生知识迁移的能力;其得出的过程涉及数形结合,整体代换等重要的数学思想。因此,它在整个初中阶段“数与式”的学习中占有重要地位。
2、教学目标:根据教材内容和学生实际情况,我确定了三个教学目标:
(1)知识与能力:通过自己的探索,用几何和代数两种方法得出多项式与多项式的乘法法则;
(2)过程与方法:在学生探究的过程中培养学生的思维能力及分析和解决问题的能力,体会数形结合的思想和整体代换的思想;(3)通过数学活动,让学生对数学产生好奇心和求知欲,从而体会到探索与创造的乐趣。
3、教学重难点:多项式乘以多项式法则的推导过程以及法则的归纳和应用。
二、说教法和学法指导:
为了充分调动学生的参与意识,更好地落实各项目标,本节课以学生的数学活动为主线,以让学生参与为本课的核心,以自主、合作、探究、实践为学生的主要学习方式,在此基础上,我采用了如下的教学方法:尝试法、实践法、讨论法、发现法,让学生全员参与,全员活动,让学生和老师、学生和学生之间互动,特别是让学生展示、点评、质疑,充分调动了学生的积极性,发挥学生的潜能。
三、说教学设计:
本节课的主要教学过程设计了“导学达标——探究释疑——拓展延伸——内化迁移”四个基本环节。
1、导学达标:
在这个环节首先检查了学生的预习案完成情况,针对预习中存在的问题进行点拨。然后由一个实际问题引入课题,激发学生兴趣,最后再解读本课的学习目标、重难点,让学生带着目标和问题展开本节课的`学习。
2、探究释疑:
这一环节一共设计了两个探究活动。
第一个探究活动让学生进行了拼图游戏,通过比较所表示的拼出的大长方形面积,从而发现多项式乘以多项式的法则,然后和预习案中用代数方法所得出的结论进行比较。此时,教师引导学生进一步认识到多项式乘以多项式本质上与单项式乘以多项式一样都是乘法分配律的应用,从而突破了难点,进而让学生体会到转化以及数形结合的思想。
在得出多项式乘法的法则后,我让学生试着用文字表述它,学生的叙述开始不一定完善,在此教师要帮助学生认识到法则的本质,并最终得出多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.
接下来我设计了一道例题,例题是课本的题目,其目的是熟悉、理解法则。完成例1时,教师引导学生严格按照法则来做,并认真板书,规范了学生的解题过程,起到了示范作用。在完成例题之后,为了让学生检验自己对法则的理解和掌握程度
八年级数学说课稿 篇6
一、说教材
首先谈谈我对教材的理解,《菱形》是人教版初中数学八年级下册第十八章18。2。2的内容,“菱形”是继“四边形”、“平行四边形”和“矩形”之后的一个学习内容,它是在学生掌握了平行四边形的性质与判定,又学习了特殊的平行四边形——矩形,具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习正方形等知识的基础,起着承前启后的作用。四边形既是平面几何中的基本图形,也是平面几何研究的主要对象,因此学好四边形的内容,尤其是特殊的四边形,对学生来说,无论是进一步学习还是实际应用都是很重要的。同时通过探索和证明菱形的特殊性质可以让学生体会证明的必要性并进一步丰富对图形的认识和感受。
二、说学情
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,也能做出简单的逻辑推理,而且在生活中也为本节课积累了很多经验。所以,学生对本节课的学习是相对比较容易的。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
知道并且会用菱形的定义和性质来进行有关的论证和计算。
(二)过程与方法
经历探索菱形性质的过程,通过操作发现特征,进一步发展合情推理能力。通过菱形与平行四边形关系的研究,进一步加深对“一般与特殊”的认识。
(三)情感态度价值观
在探究菱形性质的过程中,享受成功的喜悦,提高学习数学的兴趣。体会菱形的图形美,感受数学与生活的密切关系。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:菱形性质的探究。本节课的教学难点是:菱形性质的探究和应用。
五、说教法和学法
菱形是特殊的平行四边形,这节课教学时注重学生的探索过程,让学生动手操作、观察、猜测、验证,进而获得知识,培养主动探究的能力。教学方法针对本节课的特点,我采用 “创设情境——观察探索——总结归纳——知识运用”为主线的教学模式,动手观察分析讨论相结合的方法。
“授人以鱼,不如授人以渔”,本节课的教学中,要帮助学生学会运用观察、分析、比较、归纳、概括等方法,使传授知识与培养能力融为一体,在教师的指导、提示启发下,学生尝试动手操作,提高了学生的实践操作水平,培养了学生动手能力,养成勤动手,勤钻研的习惯。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
通过PPT展示生活中的菱形实例(可活动的`衣帽架、收缩门、防护栏等),提问是什么图形,由已知的平行四边形引入新课。
用这些来源于生活的美丽图片吸引学生的注意力,激发他们的好奇心,诱发学生对新知识的需求。
(二)新知探索
利用制作好的平行四边行教具,将平行四边形的一条边平移到一个固定的位置后,让学生观察图形,引导学生观察教具的变化情况,引出菱形的定义(板书定义):
定义:有一组邻边相等的平行四边形叫做菱形。(板书)
【设计意图】利用自制教具,有较好的直观性和可操作性,让学生更容易理解菱形的定义,同时加强了与平行四边形定义的对比性。接下来教师用多媒体展示菱形的动画制作过程。
出示问题
问题1:菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?
问题2:你能看出图中有哪些相等的线段和角吗?
总结学生回答得到菱形是轴对称图形,它的对角线所在的直线就是它的对称轴。
以及菱形的性质:
(1)菱形的四条边都相等。
(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
并进一步追问:这还只是我们直观折纸得出来的,那么如何证明它们呢?
出示求证:
(1)菱形的四条边都相等。
(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
让学生小组讨论进行证明,并请学生进行板演。
【设计意图】通过动手操作,经历探究对图形的对折,即对轴对称图形的再认识,感受动手实验的乐趣,培养猜想的意识,感受直观操作得出猜想的便捷性,培养学生的观察、实验、猜想等合情推理能力。
(三)课堂练习
接下来是巩固提高环节。
例1:菱形具有而平行四边形不具有性质是( )。
A。对角相等 B。对角线互相平分
C。对边相等 D。对角线互相垂直
例2:这是一个可以活动的菱形衣架,它的边长为16cm,如果墙上钉子间的距离AB=BC=16cm,
则图中的∠1=________。
(四)小结作业
提问:今天有什么收获?
引导学生回顾:菱形的定理与性质。
课后作业:
思考如何求菱形面积。
八年级数学说课稿 篇7
一、教材分析
1、教材的地位和作用
本节课是北师大版实验教科书八年级上册第二章《实数》的第六节内容。在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。
2、教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标)。
知识技能:(1)了解无理数和实数的概念以及实数的分类。
(2)知道实数与数轴上的点具有一一对应关系。
数学思考:(1) 经历对实数进行分类的过程,发展学生的分类意识。
(2) 经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的。
解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数。
情感态度:(1) 通过了解数系扩充体会数系扩充对人类发展的作用。
(2) 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。
3、教学重点、难点
重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
难点:用数轴上的点来表示无理数。
二、学情分析
在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算。课本对学生掌握实数要求不高。只要求学生了解无理数和实数的意义。但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。本节主要引导学生熟知实数的概念和意义,为后面学习打下基础。
三、教法学法分析:
教法分析:根据本节课的教学内容和学生的实际水平,我采用的是引导发现法、类比法和多媒体辅助教学。
(1)在教学中通过设置疑问,创设出思维情境,然后引导学生动脑、动手,使学生在开放、民主、和谐的教学氛围中获取知识,提高能力,促进思维的发展。
(2) 借助多媒体辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的。
(3)教具:三角板、圆规、多媒体。
学法分析:我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习、享受学习。因此,在本节课的教学中引导学生“仔细看、动脑想、多交流、勤练习”的学习,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们“会观察”、 “会类比”、“会分析”、“会归纳”的能力。
四、教程分析:
针对本节教材的特点,我把教学过程设计为以下五个环节:
一、创设问题情景,引出实数的概念
内容:问题:(1)什么是有理数?有理数怎样分类?
(2)什么是无理数?带根号的数都是无理数吗?
意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备.
学生回答:无理数是无限不循环小数.
带根号的'数不一定是无理数.
3、把下列各数分别填入相应的集合内。有理数集合、无理数集合
, , , , , , , , , ,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)
意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念.
教师引导学生得出实数概述并板书:有理数和无理数统称实数(real number)。教师点明:实数可分为有理数与无理数。最后多媒体展示具体分类,并对有理数和无理数从小数的角度进行说明。
二、议一议,
1、在实数概念基础上对实数进行不同分类。
无理数与有理数一样,也有正负之分,如 是正的, 是负的。
教师提出以下问题,让学生思考:
(1)你能把 , , , , , , , , , ,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?
正数集合:
负数集合:
(2)0属于正数吗?0属于负数吗?
(3)实数除了可以分为有理数与无理数外,实数还可怎样分?
意图:在实数概念形成的基础上对实数进行不同的分类.上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类.提醒学生分类可以有不同的方法,但要按同一标准不重不漏.
让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数、0、负实数。
2、了解实数范围内相反数、倒数、绝对值的意义:
在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么。在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
例如, 和 是互为相反数, 和 互为倒数。
三、想一想
让学生思考以下问题
1、a是一个实数,它的相反数为 ,绝对值为 ;
2、如果 ,那么它的倒数为 。
意图:从复习入手,类比有理数中的相关概念,建立实数的相反数、倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的
让学生回答后,教师归纳并板书:实数a的相反数为 ,绝对值为 ,若 它的倒数为 (教师指明:0没有倒数)
增加练习:(多媒体展示)第一组1. 的绝对值是
2、 a是一个实数,它的绝对值是
第二组:1、 的相反数是 ,绝对值是
2、绝对值等于 的数是 , 3、 的绝对值是
4、正实数的绝对值是 ,0的绝对值是 ,负实数的绝对值是
例题:求下列各数的相反数、倒数、绝对值
(1) (2) (3) 学生上黑板完成,教师巡视学生如何书写,对发现的问题及时处理,最后与学生共同纠正。
明晰:实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用。(媒体展示两个举例)
四、议一议。
探索用数轴上的点来表示无理数
1、每个有理数都可以用数轴上的点表示,那么无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示 、 和 这样的无理数的点吗?
2、多媒体展示 的做法和 和 的做法
如图OA=OB,数轴上A点对应的数是多少?
让学生充分思考交流后,引导学生达成以下共识:
探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小.
(1)A点对应的数等于 ,它介于1与2之间。
(2)每一个有理数都可以用数轴上的点表示
(3)每一个无理数都可以用数轴上的点来表示
(4)每个实数都可以用数轴上的点来表示,每一个实数都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。
(4)和有理数一样,在数轴上,右边的点比左边的点表示的数大。
五、随堂练习(多媒体展示)
第一组:判断题:
①实数不是有理数就是无理数、②无理数都是无限不循环小数. ③无理数都是无限小数④带根号的数都是无理数. ⑤无理数一定都带根号. ⑥两个无理数之积不一定是无理数. ⑦两个无理数之和一定是无理数. ⑧数轴上的任何一点都可以表示实数.
第二组:
1.判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数。
2、求下列各数的相反数、倒数和绝对值:
(1) (2) (3)
3、在数轴上作出 对应的点。
意图:通过以上练习,检测学生对实数相关知识的掌握情况.
六、小结
1、实数的概念
2、实数可以怎样分类
3、实数a的相反数为 ,绝对值 ,若 ,它的倒数为 。
4、数轴上的点和实数一一对应。
七、作业
课本习题2. 8 1、2、3题
结束语:多媒体展示:
人生的价值,并不是用时间,而是用深度去衡量的。
——列夫托尔斯泰
八、板书设计:
实数
1、实数的概念 4、实数与数轴上的点的关系
2、实数的分类 5、例题
3、实数a的相反数为 , 6、学生练习
绝对值 ,若 ,它的倒数为
八年级数学说课稿 篇8
各位领导、老师们:
大家好!
今天我说课的内容是义务教育课程标准实验教科书《数学》八年级上册第十二章12.3.1等腰三角形性质第一课时。下面,我从教材分析、教法分析、学法分析、教学过程、教学反思五个方面来汇报我对这节课的教学设想。
一、教材分析
1、教材的地位与作用:
本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
2、教学目标:
知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。
过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。
解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。
情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。)
3、教学重点与难点:
重点:等腰三角形的性质的探索和应用。
难点:等腰三角形性质的推理证明。
二、教法设计:
教法设想:我采用探索发现法和启发式教学法完成本节的教学,在教学中通过创设情景,设计问题,引导学生自主探索,合作交流,组织学生动手操作,观察现象,提出猜想,推理论证等。有效地启发学生的思考,使学生真正成为学习的主体。
三、学法设计:
在学生学习的过程中,我将从两个方面指导学生学习,一方面老师大胆放手,让学生去自主探究等腰三角形的性质,另一方面,在对等腰三角形性质的证明过程中,老师要巧妙引导,分散难点。这样做既有利于活跃学生的思维,又能帮助他们探本求源,这样也体现了以“教师为主导,学生为主体”的新课改背景下的教学原则。
四、教学过程:
根据制定的教学目标,围绕重点,突破难点,我将从以下七个方面设计我的教学过程:
1、创设情景:
首先向同学们出示精美的建筑物图片,并提出问题串:(1)什么是轴对称图形?这些图片中有轴对称图形吗? (2)里面有等腰三角形吗?然后向学生介绍等腰三角形的定义以及边角等相关的概念,由于学生小学就已经接触过,所以学生很容易理解。再提出第三个问题:(3)a.等腰三角形是轴对称图形吗?b.等腰三角形具备哪些性质呢?引出本节课的课题-我们这节课来探究等腰三角形的性质。--板书课题。
2、动手操作,大胆猜想:
①拿出课下制作的等腰三角形的纸片,它是轴对称图形吗?对称轴是谁?用你手中的纸片说明你的看法?②等腰三角形沿对称轴折叠后,你能得到哪些结论?(看谁得到的结论多)
③分组讨论。(看哪一组气氛最活跃,结论又对又多.)
然后小组代表发言,交流讨论结果。
④归纳:你能猜想得到等腰三角形具有什么性质?你能用文字语言归纳一下吗?
(教师引导学生进行总结归纳得出性质1,2)
性质1:等腰三角形的两底角相等。(简写成“等边对等角”)
性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)
(设计意图:由学生自己动手折纸活动,根据等腰三角形轴对称性,大胆猜测等腰三角形的性质,培养学生的观察分析、概括总结能力。也发展了学生的几何直观。教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2。培养了学生进行合情推理的能力。)
3、证明猜想,形成定理:
你能证明等腰三角形的性质吗?
对于这种几何命题的证明需要三大步骤:分析题设结论,画出图形写出已知和求证,最后进行推理证明。这对于八年级学段的'学生难度较大,为了突破难点,我决定设计以下三个阶梯问题:
(1)找出“性质1”的题设和结论,画出的图形,写出已知和求证。
(2)证明角和角相等有哪些方法?(学生可能会想到平行线的性质,全等三角形的性质)
(3)通过折叠等腰三角形纸片,你认为本题用什么方法证明∠B=∠C,写出证明过程。
问题1的设计使得学生顺利地将文字语言转化为符号语言,帮助学生顺利地写出已知和求证;
问题2提供给学生了解题思路,引导学生用旧的知识解决新的问题,体现了数学的转化思想。找到新知识的生长点,就是三角形的全等。
问题3的设计目的:因为辅助线的添加是本题中的又一难点,因此让学生对折等腰三角形纸片,使两腰重合,使学生在形成感性认识的同时,意识到要证明∠B=∠C,关键是将∠B和∠C放在两三角形中去,构造全等三角形,老师再及时设问:你认为可以通过什么方法可以将∠B和∠C放在两个三角形中去呢?再次让学生思考,由于对知识的发生,发展有了充分的了解,学生探讨以后可能会得出以下三种方法:
(1)作顶角∠BAC的平分线,
(2)作底边BC的中线,
(3)作底边BC的高。以作顶角平分线为例,让一生板演,其他学生在练习本上写出完整的证明过程。以达到规范学生的解题步骤的目的。其他两种证法,让学生课下证明。这样,学生就证明了性质1,同时由于△BAD≌△CAD,也很容易得出等腰三角形的顶角平分线平分底边,并垂直于底边。用类似的方法还可以证明等腰三角形底边的中线平分顶角且垂直于底边,等腰三角形底边上的高平分顶角且平分底边,这也就证明了性质2。
(设计意图:教师精心设计问题串引导学生通过动手,观察,猜想,归纳,猜测出等腰三角形的性质,发展了学生的合情推理能力,同时也让学生明确,结论的正确性需要通过演绎推理加以证明。这样把对性质的证明作为探索活动的自然延续和必要发展,使学生感受到合情推理与演绎推理是相辅相成的两种形式,同时感受到探索证明同一个问题的不同思路和方法,发展了学生思维的广阔性和灵活性。)
(4)你能用符号语言表示性质1和性质2吗?
(设计意图:把文字语言转换为符号语言,让学生建立符号意识,这有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。——
4、性质的应用:
例一:在等腰△ABC中,AB=AC,∠A=50°,则∠B=_____,∠C=______
变式练习:
1、在等腰中,∠A=50°,则 ∠B=___,∠C=___
2、在等腰中,∠A=100°,则∠B=___,∠C=___
设计意图:此例题的重点是运用等腰三角形“等边对等角”这一性质和三角形的内角和,突出顶角和底角的关系,如
例一,学生就比较容易得出正确结果,对变式练习(1)、(2)学生得出正确的结果就有困难,容易漏解,让学生把变式题与例一进行比较两题的条件,让学生认识等腰三角形在没有明确顶角和底角时,应分类讨论:变式1(如图)①当∠A=50°为顶角时,则∠B=65°,∠C=65°。②当∠A=50°为底角时,则∠B=50°,∠C=80°;或∠B=80°,∠C=50°。变式2①当∠A=100°为顶角时,则∠B=40°,∠C=40°。②当∠A=100°为底角时,则△ABC不存在。由此得出,等腰三角形中已知一个角可以求出另两个角(顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°)。
例二:在等腰△ABC中,AB=5,AC=6,则△ABC的周长=_______
变式练习:在等腰△ABC中,AB=5,AC=12,则 △ABC的周长=______
(设计意图:此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,并强调在没有明确腰和底边时,应该分两种情况讨论。如例二,①当AB=5为腰时,则三边为5,5,6;②当AB=5为底时,则三边为6,6,5。变式练习①:当AB=5为腰时,三边为5,5,12;②当AB=5为底时,三边为12,12,5。此时同学们就会毫不犹豫地得出三角形的周长,这时老师就可以提出质疑,让同学们之间讨论(学生容易忽视三角形三边关系,看能否构成一个三角形)。
例三、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。
(例3是课本例题,有一定难度,让学生展开讨论,老师参与讨论,认真听取学生分析,引导学生找出角之间的关系,利用方程的思想解决问题,并书写出解答过程。本题运用了等腰三角形性质1,并体现了利用方程解决几何问题的思想。)
例四:
在△ABC中,点D在BC上,给出4个条件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2个条件作题设,另外2个条件作结论,你能写出一个正确的命题吗?看谁写得多。(分组讨论抢答)
5、巩固提高
(1)等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为度。
(2)如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30。求∠1和∠ADC的度数。
(3)课本本章数学活动三“等腰三角形中相等的线段”
设计意图:
(1)题运用等腰三角形的性质1及等腰三角形一腰上的高的画法,由于题目没有图,要用到分类讨论的数学思想,学生能正确画出锐角和钝角三角形两种图形就容易得出结果,也渗透了一题多解。
(2)题同时运用了等腰三角形的性质1,性质2,还有三角形的内角和这三个知识点,培养学生对于知识的灵活运用,“讨论”是本章的数学活动3“等腰三角形中相等的线段”。与等腰性质的证明思路类似,先通过等腰三角形的对称性猜想距离是相等的,然后通过做辅助线构造全等三角形来进行严密的推理。更加说明了合情推理和演绎推理是相辅相成的。
6、课堂小结:不仅仅说你收获了什么,而是让学生从知识上,思想方法上,以及辅助线的做法上等方面具体总结一下。然后教师结合学生的回答完善本节知识结构。学生对于自己的疑惑提出小组内交流,还没解决则全班交流。
7、布置作业:
P55练习1、2、3题
P56习题1、4、6,(选做7,8题)
八年级数学说课稿 篇9
下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。
一、说教材
1、 教材内容:我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。
2、 教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。
3、 教学目标
知识目标:(1)、理解分式的乘除运算法则
(2)、会进行简单的分式的乘除法运算
能力目标:(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。
(2)、能解决一些与分式有关的简单的实际问题。
情感目标:(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。
(2)、培养学生的创新意识和应用意识。
(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。
4、教学重点:分式乘除法的法则及应用.
5、教学难点:分子、分母是多项式的分式的乘除法的运算。
二、说教法
教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。
1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。
2、合作式教学,在师生平等的交流中评价学习。
三、说学法
学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的.基本性质等,都为本节课的学习做好了知识上的铺垫。
1、类比学习的方法。通过与分数的乘除法运算类比。
2、合作学习。
四、说教学程序
1、类比学习,探索法则。(约3分钟)
让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)
复习:分数的乘除法法则(抽一学生口答)
猜一猜: ; (a、b、c、d表示整数且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零)
类比:得出分式的乘除法法则(a、b、c、d表示整式且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零,a、c中含有字母)
活动目的:
让学生观察、计算、小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。
教学效果:
通过类比分数的乘除法的法则,学生明白字母代表数、代表式,这样很顺利的得出分式的乘除法的法则。
2、理解法则:(约2分钟)(1)文字叙述:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
(2)符号表述
× = ;
÷ = × = .
活动目的:
两种形式巩固对法则的理解。
教学效果:
理解法则,进一步发展学生的符号感。
3、应用:(约20分钟)
(1)牛刀小试
教材74页到76页的例1、做一做、例2.我准备把例1和例2先学习了。再学习做一做。
例1 计算
(1) ;
(2)
活动目的:
抓住学生刚学习了法则,跃跃欲试的学习激情,抽2名同学上黑板演算,其他学生在课堂作业本上演算。老师巡查,予以辅导,反复提醒学生像分数乘法一样来学习分式乘法(即类比)。
教学效果:
有的学生可能没有注意把结果化为最简分式,要提醒注意,有的学生可能一边计算一边就分解因式进行约分(化简)了的,说明已经很好地与分数的乘法进行类比学习了(分数是分解因数),应该予以表扬,让全班学生认真学习、领会。讲评时还应该让学生理解一步的算理。
例2.计算:
(1)3xy2÷ ;
(2) ÷
活动目的:
让学生进一步理解类比的学习方法,分式的除法先转化为乘法。
教学效果:
因式分解在分式约分中起到重要作用,对于分子、分母是多项式的分式的乘除法的运算时,一般先分解因式,并在运算过程中约分,可以使运算简化。
(2)“西瓜问题”
活动目的:
能解决一些与分式有关的简单的实际问题。能有条理的进行表达。
教学效果:
通过以上例题帮助学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种情况)
4、随堂练习。(约5分钟)
76页第一题,共3个小题。
教学效果:
在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。 分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。
5、数学理解(约5分钟)
教材77页的数学理解,学生很容易出现像小明那样的错误。但是也很容易找出错误的原因。
补充例3 计算(xy-x2)÷
教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。
6、课堂小结(约3分钟)
先学生分组小结,在全班交流,最后老师总结。
7、作业布置,凝固新知。(约2分钟)
教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)
五.说板书设计
主板书采用纲要式,一目了然。
一、 分式的基本性质
1、 文字叙述
2、 符号表述
二、应用
最后,谈谈我的体会。课堂上平等对话,让学生自主掌握数学,发现问题,及时改正。教学是让学生丰富认识。
八年级数学说课稿 篇10
一、学生起点分析
学生已经学完三角形的内角和,对内角和的问题有了一定的认识,加上八年级的学生好奇心、求知欲强,互相评价、互相提问的积极性高、因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,所以把这节课设计成一节探索活动课是切实可行的。
二、教学任务分析
本节课是《义务教育课程标准实验教科书》北师大版八年级上册第四章第六节《探索多边形内角和与外角和》的第一课时、本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神、在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力。
教学目标
【知识与技能】掌握多边形内角和定理,进一步了解转化的数学思想
【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。
教学重难点
【教学重点】多边形内角和定理的探索和应用。
【教学难点】多边形定义的理解。多边形内角和公式的推导。转化的数学思维方法的渗透。
三、教学过程设计
本节课分成七个环节:
第一环节:创设现实情境,提出问题,引入新课。
第二环节:概念形成。
第三环节:实验探究。
第四环节:思维升华。
第五环节:能力拓展。
第六环节:课时小结。
第七环节:布置作业。
第一环节 创设现实情境,提出问题,引入新课
1、多媒体展示蜂窝,教师结合图片让学生发现生活中无处不在的多边形。
2、工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角?
目的:
1、通过现实情境的展示,调动学生的情绪,激发起进一步学习的兴趣。
2、把学生的注意力自然的引入研究方向,为课题的研究做铺垫。
第二环节 概念形成
1、借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的`元素。
2、教师再给出严格规范的定义,特别借助学具说明“在平面内”的必要性、此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形。
目的:
1、对于边角这些能在图形中识别而又不要求学生掌握的描述性定义,采取学生类比三角形的表示方法来归纳,渗透类比的数学思想。
2、借助于自制的直观教具,说明多边形定义中“在平面内”这一条件,易于学生理解,化解了难点。
第三环节 实验探究
(以四人小组为单位展开探究活动)
提出问题:三角形的内角和为180°,那么多边形的内角和是多少度呢?从四边形开始研究。
活动一:利用四边形探索四边形内角和
要求:先独立思考再小组合作交流完成)
(师巡视,了解学生探索进程并适当点拨)
(生思考后交流,把不同的方案在纸上完成)
【八年级数学说课稿】相关文章:
八年级数学说课稿优秀05-31
数学说课稿07-03
数学活动说课稿07-21
八年级数学说课稿集锦5篇09-03
八年级数学说课稿模板汇总六篇09-09
关于八年级数学说课稿3篇06-27
初中数学优秀说课稿02-16
数学教学说课稿11-11
初中数学优秀说课稿12-01