- 最新高中数学说课稿 推荐度:
- 相关推荐
(必备)最新高中数学说课稿
作为一名教职工,常常要写一份优秀的说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。说课稿应该怎么写呢?下面是小编为大家收集的最新高中数学说课稿,仅供参考,欢迎大家阅读。
最新高中数学说课稿1
各位老师:
大家好!
我叫xxx,来自xx。我说课的题目是《用样本的数字特征估计总体的数字特征》,内容选自于高中教材新课程人教a版必修3第二章第二节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1、教材所处的地位和作用
在上一节我们已经学习了用图、表来组织样本数据,并且学习了如何通过图、表所提供的信息,用样本的频率分布估计总体的分布情况。本节课是在前面所学内容的基础上,进一步学习如何通过样本的情况来估计总体,从而使我们能从整体上更好地把握总体的规律,为现实问题的解决提供更多的帮助。
2教学的重点和难点
重点:
⑴能利用频率颁布直方图估计总体的众数,中位数,平均数。
⑵体会样本数字特征具有随机性
难点:能应用相关知识解决简单的实际问题。
二、教学目标分析
1、知识与技能目标
(1)能利用频率颁布直方图估计总体的众数,中位数,平均数。
(2)能用样本的众数,中位数,平均数估计总体的众数,中位数,平均数,并结合实际,对问题作出合理判断,制定解决问题的有效方法。
2、过程与方法目标:
通过对本节课知识的学习,初步体会、领悟“用数据说话”的统计思想方法。
3、情感态度与价值观目标:
通过对有关数据的搜集、整理、分析、判断培养学生“实事求是”的科学态度和严谨的工作作风。
三、教学方法与手段分析
1、教学方法:结合本节课的教学内容和学生的认知水平,在教法上,我采用“问答探究”式的教学方法,层层深入。充分发挥教师的主导作用,让学生真正成为教学活动的主体。
2、教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性。
四、教学过程分析
1、复习回顾,问题引入
「屏幕显示」
〈问题1〉在日常生活中,我们往往并不需要了解总体的分布形态,而是更关心总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的平均使用寿命,我们怎样了解灯泡的的使用寿命呢?当然不能把所有灯泡一一测试,因为测试后灯泡则报废了。于是,需要通过随机抽样,把这批灯泡的寿命看作总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征来估计总体的数字特征。
提出问题:什么是平均数,众数,中位数?
(教师提问,铺垫复习,学生思考、积极回答。根据学生回答,给出补充总结,借助用多媒体分别给出他们的定义)
「设计意图」使学生对本节课的学习做好知识准备。
(进一步提出实例、导入新课。)
「屏幕显示」
〈问题2〉选择薪水高的职业是人之常情,假如你大学毕业有两个工作相当的单位可供选择,现各从甲乙两单位分别随机抽取了50名员工的月工资资料如下(单位:元)
分组计算这两组50名员工的.月工资平均数,众数,中位数并估计这两个公司员工的平均工资。你选择哪一个公司,并说明你的理由。
(学生分组分别求两组数据的平均工资。
学生:甲、乙平均工资分别为:甲:1320元,乙:1530元。
所以我选乙公司。
学生乙:甲、乙两公司的众数分别为甲:1200,乙:1000,所以我选择甲公司。
学生丙:我要根据我的能力选择。)
「设计意图」学生按“常理”做出选择,教师指出只凭平均工资做出判断的依据并不可靠,从而引导学生进一步深入问题。
2、讲授新课,深入认识
⑴「屏幕显示」
例如,在上一节抽样调查的100位居民的月均用水量的数据中,我们画出了这组数据的频率分布直方图。现在,观察这组数据的频率分布直方图,能否得出这组数据的众数、中位数和平均数?
(把学生分成若干小组,分别计算平均数、中位数、众数,或估计平均数、中位数、众数。然后比较结果,会发现通过计算的结果和通过估计的结果出现了一定的误差。引导学生分析产生误差的原因。原因是由于样本数据的频率分布直方图把原始的一些数据给遗失了。让学生明白产生这样的误差对总体的估计没有大的影响,因为样本本身也有随机性。)
「设计意图」让学生懂得如何根据频率分布直方图估计样本的平均数、中位数和众数。使学生明白从直方图中估计样本的数字特征虽然会有一些误差,但直观、快速、可避免繁琐的计算和阅读数据的过程。
⑵〈提出问题〉根据样本的众数、中位数、平均数估计总体平均数的基本数据,并对上一节的探究问题制定一个合理平价用水量的的标准。
(师生通过共同交流探讨得知仅以平均数或只使用中位数或众数制定出平价用水标准都是不合理的,必须综合考虑才能做出合理的选择)
「设计意图」使学生会依据众数、中位数、平均数对数据进行综合判断,并做出合理选择。也为接下来对他们优缺点的总结打下基础。
⑶总结出众数、中位数、平均数三种数字特征的优缺点。
(先由学生思考,然后再老师的引导下做出总结)
「设计意图」使学生能更准确更全面地依据样本的众数、中位数、平均数对数据进行综合判断,并做出合理选择,使实际问题得到正确的解决。
3、反思小结、培养能力
①学习利用频率直方图估计总体的众数、中位数和平均数的方法。
②介绍众数、中位数和平均数这三个特征数的优点和缺点。
③学习如何利用众数、中位数和平均数的特征去分析解决实际问题。
「设计意图」小节是一堂课的概括和总结,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力
4、课后作业,自主学习
课本练习
[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
5、板书设计
最新高中数学说课稿2
今天我说课的内容是高二立体几何(人教版)第九章第二章节第八小节《棱锥》的第一课时:《棱锥的概念和性质》。下面我就从教材分析、教法、学法和教学程序四个方面对本课的教学设计进行说明。
一、说教材
1、本节在教材中的地位和作用:
本节是棱柱的后续内容,又是学习球的必要基础。第一课时的教学目的是让学生掌握棱锥的一些必要的基础知识,同时培养学生猜想、类比、比较、转化的能力。著名的生物学家达尔文说:“最有价值的知识是关于方法和能力的知识”,因此,应该利用这节课培养学生学习方法、提高学习能力。
2、教学目标确定:
(1)能力训练要求
①使学生了解棱锥及其底面、侧面、侧棱、顶点、高的概念。
②使学生掌握截面的性质定理,正棱锥的性质及各元素间的关系式。
(2)德育渗透目标
①培养学生善于通过观察分析实物形状到归纳其性质的能力。
②提高学生对事物的感性认识到理性认识的能力。
③培养学生“理论源于实践,用于实践”的观点。
3、教学重点、难点确定:
重点:
1、棱锥的截面性质定理
2、正棱锥的性质。
难点:培养学生善于比较,从比较中发现事物与事物的区别。
二、说教学方法和手段
1、教法:
“以学生参与为标志,以启迪学生思维,培养学生创新能力为核心”。
在教学中根据高中生心理特点和教学进度需要,设置一些启发性题目,采用启发式诱导法,讲练结合,发挥教师主导作用,体现学生主体地位。
2、教学手段:
根据《教学大纲》中“坚持启发式,反对注入式”的教学要求,针对本节课概念性强,思维量大,整节课以启发学生观察思考、分析讨论为主,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、积极探索。
三、说学法:
这节课的核心是棱锥的截面性质定理,、正棱锥的性质。教学的指导思想是:遵循由已知(棱柱)探究未知(棱锥)、由一般(棱锥)到特殊(正棱锥)的认识规律,启发学生反复思考,不断内化成为自己的认知结构。
四、学程序:
[复习引入新课]
1、棱柱的性质:
(1)侧棱都相等,侧面是平行四边形
(2)两个底面与平行于底面的截面是全等的多边形
(3)过不相邻的两条侧棱的截面是平行四边形
2、几个重要的四棱柱:
平行六面体、直平行六面体、长方体、正方体
思考:如果将棱柱的上底面给缩小成一个点,那么我们得到的将会是什么样的体呢?
[讲授新课]
1、棱锥的基本概念
(1)、棱锥及其底面、侧面、侧棱、顶点、高、对角面的概念
(2)、棱锥的表示方法、分类
2、棱锥的性质
(1)、截面性质定理:
如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比
已知:如图(略),在棱锥s—ac中,sh是高,截面a’b’c’d’e’平行于底面,并与sh交于h’。
证明:(略)
引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥
的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。
(2)、正棱锥的定义及基本性质:
正棱锥的定义:
①底面是正多边形
②顶点在底面的射影是底面的中心
①各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高相等,它们叫做正棱锥的斜高;
②棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;
棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形
引申:
①正棱锥的侧棱与底面所成的角都相等;
②正棱锥的侧面与底面所成的二面角相等;
(3)正棱锥的各元素间的关系
下面我们结合图形,进一步探讨正棱锥中各元素间的关系,为研究方便将课本图9—74(略)正棱锥中的棱锥s—obm从整个图中拿出来研究。
引申:
①观察图中三棱锥s—obm的侧面三角形状有何特点?
(可证得∠som =∠sob =∠smb =∠omb =900,所以侧面全是直角三角形。)
②若分别假设正棱锥的高so= h,斜高sm= h’,底面边长的一半bm= a/2,底面正多边形外接圆半径ob=r,内切圆半径om= r,侧棱sb=l,侧面与底面的二面角∠smo= α,侧棱与底面组成的角∠sbo= β,∠bom=1800/n(n为底面正多边形的边数)请试通过三角形得出以上各元素间的关系式。
[课堂练习]
1、知一个正六棱锥的高为h,侧棱为l,求它的底面边长和斜高。
﹙解析及图略﹚
2、锥被平行与底面的平面所截,若截面面积与底面面积之比为1∶2,求此棱锥的高被分成的两段(从顶点到截面和从截面到底面)之比。
﹙解析及图略﹚
[课堂小结]
一:棱锥的基本概念及表示、分类
二:棱锥的.性质
截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比
引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。
正棱锥的定义及基本性质
正棱锥的定义:
①底面是正多边形
②顶点在底面的射影是底面的中心
(1)各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高
相等,它们叫做正棱锥的斜高;
(2)棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形
引申:
①正棱锥的侧棱与底面所成的角都相等;
②正棱锥的侧面与底面所成的二面角相等;
③正棱锥中各元素间的关系
[课后作业]
1:课本p52习题9、8:2、4
2:课时训练:训练一
最新高中数学说课稿3
我今天说课的课题是新课标高中数学人教版a版必修第二册第三章“3、1、1倾斜角与斜率”。我说课的程序主要由说教材、说教法、说学法、说教学程序这四个部分组成。
一、说教材:
1、教材分析:直线的倾斜角和斜率是解析几何的重要概念之一,也是直线的重要的几何要素。学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以坐标化(解析化)的方式来研究直线相关性质,而本节直线的倾斜角与斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节也初步向学生渗透解析几何的基本思想和基本方法。因此,本节课的有着开启全章,奠定基调,渗透方法,明确方向,承前启后的作用。
2、教学目标
根据本课教材的特点,新大纲对本节课的`教学要求,结合学生身心发展的合理需要,我从三个方面确定了以下教学目标:
(1)知识与技能目标:
了解直线的方程和方程的直线的概念;在新的问题的情境中,去主动构建理解直线的倾斜角和斜率的定义;初步感悟用代数方法解决几何问题的思想方法。
(2)过程与方法目标:
引导学生观察发现、类比,猜想和实验探索,培养学生的创新能力和动手能力
(3)情感、态度与价值观目标:
在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,实现共同探究、教学相长的教学情境。
3、教学重点、难点
(1)教学重点:理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率的计算公式。
(2)教学难点:斜率公式的推导
二、说教法
课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。根据这样的原则及所要完成的教学目标,我采用观察发现、启发引导、探索实验相结合的教学方法。启发引导学生积极的思考并对学生的思维进行调控,使学生优化思维过程;在此基础→←上,通过学生交流与合作,从而扩展自己的数学知识和使用数学知识及数学工具的能力,实现自觉地、主动地、积极地学习。
三、说学法
在实际教学中,根据学生对问题的感受程度不同,学习热情、身心特点等,对学生进行针对性的学法指导。主要运用引导、启发、情感暗示等隐性形式来影响学生,多提供机会让学生去想、去做,给学生自己动手、参与教学过程、发现问题、讨论问题提供了很好的机会。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会学习,学会探索问题的方法,培养学生的能力。
四、说教学程序:
1、导入新课:
提出问题:如何确定一条直线的位置?
(1)两点确定一条直线;
(2)一点能确定一条直线吗?
过一点p可以作无数条直线,这些直线的倾斜程度不同,如何描述直线的倾斜程度?本节课将解决这个问题。
设计意图:打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,直线的倾斜角这一概念的产生是因为研究直线的需要,从而明确新课题研究的必要性,触发学生积极思维活动的展开。
2、探究发现:
(1)直线的倾斜角:
有新课导入直接引出此概念,学生易于接受,但是容易忽视其中的重点字。因此重点强调定义的几个注意点:①x轴正半轴;②直线向上方向;③当直线与x轴平行或重合时,直线的倾斜角为0度。由此得出直线倾斜角的取值范围。
(2)直线的确定方法:
确定平面直角坐标系中一条直线位置的几何要素:直线上的一个定点以及它的倾斜角,二者缺一不可。
(3)直线的斜率:
注:直线的倾斜角与斜率的区别:
所有的直线都有倾斜角;但是不是所有直线都有斜率(倾斜角为90°的直线没有斜率,因为90°的正切不存在。)
(4)由两点确定的直线的斜率:
先让学生自主探究、学生之间互相交流,然后再由师生共同归纳得出结论:
经过两点p1(x1、y1),p2(x2,y2)直线的斜率公式:(x1≠x2)。
3、学用结合:
(1)例题讲解:p89—90/例题1和例题2。
例题的讲解主要关注思路的点拨以及解题过程的规范书写。
(2)课堂练习:
p91/练习第1、2题
4、总结归纳:
直线的倾斜角直线的斜率直线的斜率公式
定义
取值范围
5、布置作业:p 91/练习第3、4题。
【最新高中数学说课稿】相关文章:
最新高中数学说课稿07-20
高中数学的说课稿06-14
高中数学优秀说课稿03-04
高中数学说课稿06-28
高中数学椭圆说课稿01-16
高中数学说课稿07-17
(优选)高中数学说课稿05-17
高中数学说课稿(优)05-20
关于高中数学说课稿02-18