当前位置:贤学网>范文>说课稿> 《圆锥的体积》说课稿

《圆锥的体积》说课稿

时间:2024-05-25 07:03:37 说课稿 我要投稿

《圆锥的体积》说课稿

  作为一名无私奉献的老师,时常要开展说课稿准备工作,说课稿有助于顺利而有效地开展教学活动。那么优秀的说课稿是什么样的呢?以下是小编整理的《圆锥的体积》说课稿,仅供参考,希望能够帮助到大家。

《圆锥的体积》说课稿

《圆锥的体积》说课稿1

  一.说教材。

  圆锥的认识和体积计算是《人教版》内容第十二册4143页的内容。本节

  课是在认识了圆柱体的基础上继续学习的内容。学习圆锥可以进一步加强学生对立体图形的认识。为了帮助学生认识圆锥体,理解和掌握圆锥体的体积计算公式,教材是从观察入手,到实践操作,让学生通过操作把抽象的概念具体化、形象化。让圆锥体的有关概念,体积计算公式从实践中认识,然后运用到实际生活中去。

  根据教材内容,确定教学目标:

  1.通过观察和演示,使学生认识圆锥体,掌握它的特征和体积计算公式,并能根据具体问题灵活应用计算方法。

  2.让学生理解圆锥体积公式的推导过程,认识圆柱体和圆锥体之间的关系,渗透辨证思维的方法。

  3.通过实际操作,培养学生动脑、动手的能力,让学生养成严谨、仔细的良好习惯。

  4.培养学生观察、比较、分析、判断推理的能力,发展学生空间观念,提高学生想象能力和逻辑思维能力。

  教学重点难点和关键:

  1.重点:(1)认识直圆锥并掌握它的一些特征。(2)圆锥体的体积计算。

  2.难点:(1)圆锥体体积计算公式的推导。(2)解答有关直圆锥体实物体

  积。

  3.关键:要充分应用直观教具和电脑,进行演示和实验,有目的、有步骤地引导学生观察、思考,从而推导出计算公式和有关概念。

  二.说教法和学法。

  根据教材的内容和学生的年龄特征,我采用以下教法和学法:

  1.直观操作,突破难点。

  在这节课中,充分运用实物让学生认识直圆锥,通过圆锥体的点,线,面,

  认识圆锥体的底和高。发挥学生四人小组的作用,大胆放手让学生动手操作,推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。通过动手操作,让学生用多种感官去感知事物,获取感性知识,使操作与思维紧密结合,加深对直圆锥及体积的认识。

  2.运用电脑课件的动感突出重点。

  圆锥体的认识是本节课的重点,为了让学生充分地认识圆锥体,把生活中

  的锥形物体放在屏幕上(如小麦堆,漏斗等),运用电脑闪动形式认识圆锥体的底面,侧面,顶点,高。认识圆锥体积的大小也是本节的重点和难点内容,为了突出重点,突破难点,着重引导学生去探索等底等高的圆锥体与圆柱体体积之间的关系,充分运用电脑屏幕显示操作推导过程,把静态转化为动态,加深学生对所学知识的直观印象,生动、形象、具体的教学使学生能够由具体到抽象,由感觉到知觉进行顺利的过渡。

  3.注意培养学生的`发散性思维和创新意识。

  创新教育是素质教育的核心,因此在课堂教学中注意培养学生的发散性思

  维和创新意识。

  在认识圆锥体的过程中,引导学生思考,发现,认识圆锥体的特征。在认识圆锥体的体积的过程中,引导学生积极地去和等底等高的圆柱体的体积进行比较,通过对比、分析、综合、归纳出圆锥体的体积计算公式。学生在充分认识了圆锥体和圆柱体之间的关系的基础上,从不同方面对学生进行练习,启发学生做一些有创新能力的题目,让学生充分发挥自己创造力的空间,培养学生发散性思维能力。

  三. 说教学程序设计。

  悬念引入。

  首先让学生回忆近来学习了什么立体图形(圆柱体),在电脑屏幕上展示圆

  柱体和圆锥体的实物,让学生认识圆柱体,说出圆柱体的体积公式,然后提问:屏幕上还有一些什么图形呢?(这样做一方面可以让学生初步感知圆锥体,另一方面既能激发学生的学习兴趣,又能培养学生独立思考的能力。)

  探究新知。

  1.圆锥的认识。

  (1)圆锥的组成。

  ①面。圆锥有几个面?哪两个面?[教师板书:圆锥有两个面(一个侧

  面,一个底面)。]

  ②棱。提问:圆锥有几条棱?是什么样的一条棱?[教师板书:圆锥

  有一条棱(一条封闭的曲线)。]

  ③顶点。提问:圆锥有没有顶点?有几个顶点?[教师板书:圆锥一

  个顶点。]

  ④高。提问:圆锥的高在哪里?教师出示圆锥教具(电脑显示),把它一分为二,让学生观察,得出高的概念。[教师板书:从圆锥的顶点到底面圆心的距离是圆锥的高。]

  提问:圆锥旁边(手示圆锥侧面)这个长度是不是圆锥的高?圆锥有几条高?(一条高)

  (2)圆锥的特征。

  ①一个底面是圆形。

  ②一个侧面展开图是扇形。(通过电脑演示得到。)

  (3)指导学生看圆锥立体图。

  2.圆锥体积公式推导。

  (1)电脑出示木制圆柱体铅笔,用卷笔刀将前段削成圆锥后提问:削后的这一段是什么物体?这个圆锥是由什么物体削成的?这个圆锥体和原来这段圆柱体底面积和高有什么联系?两个体积有什么关系呢?(让学生发表意见)

  (2)出示等底等高的圆柱体玻璃容器和圆锥体玻璃容器。

  ①教师演示圆柱和圆锥等底等高,并板书:等底等高。

  教师演示,学生观察:将圆锥体容器里面装满黄沙后,往圆柱容器里面倒,

  连续倒三次,圆柱体容器刚好倒满。

  ②指导学生四人小组做倒沙子实验。

  四人小组组长演示,其余同学观察,发现圆柱体积和圆锥体积之间有什

  么关系。

  (3)提问:把圆锥里装满的黄沙倒入圆柱里后,沙占圆柱容积的多少?这样倒了几次后,才装满圆柱容器?这实验说明等底等高的圆锥和圆柱体积有什么关系?

  (教师板书;圆锥的体积等于和它等底等高的圆柱体积的三分之一。)

  教师出示不等底不等高的圆柱和圆锥容器,让学生观察教师的演示,提问:圆锥体积是这个圆柱体积的三分之一吗?为什么?学生讨论。

  (4)提问:我们已经知道圆柱体积公式:V=Sh,那么与它等底等高的圆锥体积公式应是什么?

  (教师板书:V=1/3 Sh。)

  提问:这个公式里,Sh是求什么?为什么要乘以1/3?要求圆锥的体积应该知道什么条件?

  3、公式应用。

  (1)出示例1 一个圆锥体零件,底面积是19平方厘米,高是12厘米。这个圆锥体的体积是多少?

  学生口答,教师板书。

  V=1/3Sh 板书后提问:1912是求什么?

  =1/31912 如果不乘以1/3是求什么?

  =76(立方厘米)

  答 :(略)

  (2)如果题目不告诉底面积,而是告诉底面半径是3厘米,怎样求圆锥体积。

  学生练习,教师讲评(略)。

  目的是培养学生的发散性思维和创新意识。

  巩固练习。

  1、求下列各圆锥的体积。

  (1)底面积30平方厘米,高5厘米。

  (2)底面半径4分米,高是3分米。

  (3)底面直径12厘米,高是10厘米。

  (4)底面周长31.4厘米,高6厘米。

  2、

  4

  求下面各物体的体积。(单位:厘米)

  12

  9

  5

  目的是让学生运用所学的知识解决实际问题。

  3.讨论题:把一个体积是60立方厘米的圆柱体木块,削成一个最大的圆锥体,圆锥体的体积是多少?削去的体积是多少?

  通过讨论,让学生把所学的知识,形成技能技巧,培养学生的创新能力。

  归纳小结。

  通过这节课的学习,学生认识了圆锥体,掌握了圆锥体的体积计算方法,能解答有关实际问题,进一步发展了学生的空间概念和抽象思维能力。

  四. 说板书设计。

  圆锥的认识和体积计算

  圆锥的组成: 计算方法:

  面:(两个面) 棱:(一条棱) 圆柱体积公式:v=sh

  顶点:(一个顶点) 高:(一条) 圆锥体积公式:v=1/3sh

  例1 一个圆锥体零件,底面积是19平方厘米,高是12厘米,

  求这圆椎的体积是多少?

  学生口答,教师板书:(略)

  这板书简明扼要符合大纲要求,体现了这节课的主要内容,突出了本节课重点和难点,便于学生学习和掌握,展现出承上启下、循序渐近的过程,围绕着圆锥体的认识和体积计算,概括出了明确的中心。

  五. 几点说明。

  根据直观性原则,引导学生观察、操作、实验、归纳、小结,认识圆锥体和体积计算公式。根据理论与实践相结合的原理,运用所学的圆锥体的体积计算公式解决实际问题。根据学生的认知过程循序渐近地布置一些练习,培养学生的空间思维,发散性思维和创新思维能力。

《圆锥的体积》说课稿2

  教学内容:

  教材第20页例2、练一练。

  教学要求:

  使学生进-步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积公式解决-些简单的实际问题:

  教学重点:

  进一步掌握圆锥的体积计算方法。

  教学难点:

  根据不同的条件计算圆锥的体积。

  教学过程:

  一、铺垫孕伏:

  1.口算。

  2.复习体积计算。

  (1)提问:圆锥的体积怎样计算?

  (2)口答下列各圆锥的体积:

  ①底面积3平方分米,高2分米。

  ②底面积4平方厘米,高4.5厘米。

  3.引入新课。

  今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的方法解决一些简单的'实际问题。

  二、自主探究:

  l.教学例2。

  出示例题,让学生读题。提问:你们认为这道题要先求什么,再求这堆沙的重量?让学生说说为什么要先求体积,才能求这堆沙的重量?这里底面直径和高的数据怎样获得?指名板演,其他学生做在练习本上,集体订正。

  2.组织练习。

  (1)做练一练。

  指名一人板演,其余学生做在练习本上,集体订正。

  (2)讨论练习三第6题:圆柱和圆锥的体积和高分别相等,那么,圆柱的底面积和圆锥的底面积有什么关系?这道题,已知圆柱底面的周长,先求出什么?在怎样?理清思路后

  学生做在练习本上。集体订正。

  (3)讨论练习三第7题。

  底面周长相等,底面积就相等吗?

  三、课堂小结

  这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。应用圆锥体积计算.有时候还可以计算出圆锥形物体的重量。

  四、布置作业

  1.练习三第5题及数训。

  2.出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。请同学们回去测量你用第167页图制作的圆锥,求出它的体积来。

  3.思考练习三第8、9题。

《圆锥的体积》说课稿3

  一、说教材:

  1、本节教材是义务教育小学数学(人教版)六年制第十二册第三单元《圆柱、圆锥和球》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,例1、例2,相应的做一做及练习十二的第3、4、5题。

  2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

  3、教学重点:能正确运用圆锥体积计算公式求圆锥的体积。

  教学难点:理解圆锥体积公式的推导过程。

  4、教学目标:

  (1)知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;

  (2)能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;

  (3)德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

  5、教具准备:等底等高的圆柱、圆锥一对,与圆柱等底不等高的圆锥一个,与圆柱等高不等底的圆锥一个。

  学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,一定量的细沙。

  二、说教法:

  著名教育家布鲁纳说过:教学不是把学生当成图书馆,而要培养学生参与学习的过程。学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:

  1、实验操作法。

  波利亚说过:学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。因此,我在学生已经认识圆锥的基础上,设计了一个实验,通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现圆锥的体积等于和它等底等高的圆柱体积的三分之一。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。

  2、比较法、讨论法、发现法三法优化组合。

  几何知识具有逻辑性、严密性、系统性的特点。因此在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:圆锥的体积等于与它等底等高圆柱体积的三分之一。然后再让学生讨论假如这句话中去掉等底等高这几个字还能否成立,并让学生用不等底等高的空圆锥、空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的.三分之一,从而加深了等底等高这个重要的前提条件。

  三、说学法

  人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展这是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此我在讲求教法的同时,更重视对学生学法的指导。

  1、实验转化法。

  有些知识单凭解说是无法让学生真正理解的,只有通过实验,反复操作,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。

  2、尝试练习法。

  苏霍姆林斯基认为:成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。本节课在教学两道例题时,让学生尝试自己独立解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

  四、说教学程序:

  本节课我设计了以下五个教学程序:

  1、复习旧知,做好铺垫。

  (1)看图说出圆锥的底面和高。

  (2)一个圆柱体零件,底面积是6。28平方厘米,高是3厘米,它的体积是多少?

  这两道题是复习圆锥的认识和圆柱的体积公式及其应用,为新知迁移做好铺垫。

  2、谈话激趣,导入新课。

  六年级下册《圆锥体积》说课稿(1)我们已经认识了圆锥,掌握了圆柱体积公式及其应用,这节课,我们一起来学习圆锥的体积。(板书课题)

  (2)看到这个课题你们想学习一些什么?

  (3)教师总结,出示学习目标。

  这个环节让学生自己说出要学的目标,发挥了学生的主体作用,创设了和谐平等的课堂教学氛围。

  3、实验操作,探究新知。

  本环节教学是本节几何课成败的关键。为了使学生成为学习的主人,在这个环节中,我尽量给学生有对象可说,有东西可做,有问题可想,有步骤可循,让学生都能主动地操作、观察、比较、分析和归纳。

  (1)回忆圆柱体积计算公式推导方法。

  (2)动手操作,探究圆锥体积计算的公式。

  在实验时,我提出了四个问题,让学生带着问题进行操作:

  ①比一比,量一量,圆柱和圆锥的底和高之间有什么关系?

  ②用空圆锥装满沙,倒进空圆柱中,可以倒几次?每次结果怎样?

  ③通过实验你发现了什么?

  ④你能用实验说明圆锥的体积不一定是圆柱体积的三分之一吗?

  (3)学生汇报实验结果。

  (4)教师归纳公式,学生记忆公式。(板书结论和公式)

  (5)小结,刚才我们用了实验发现归纳的方法推导出了圆锥的体积公式。

  这个环节,让学生动手操作,分析比较,归纳总结,使课堂真正活了起来;最后总结了学法,可以让学生举一反三,触类旁通。

  4、尝试练习,巩固提高。

  (1)同时出示例1和例2。

  例1:一个圆锥形的零件,底面积是19平方厘米。高是12厘米。这个零件的体积是多少?

  例2:在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1。2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)

  ①师出示例题,指名读题,说出已知条件和所求问题;

  ②分析:例题1直接告诉底面积和高,根据公式可以直接求出来;例题2要求小麦的重量,必须先求什么?

  ③指名板演。

  ③集体订正,指出计算圆锥体积时,一定不要忘了乘1/3。

  (2)巩固练习,形成技能,完成做一做。

  这个环节充分放手让学生自己尝试练习,可以挖掘学生的潜能,让学生体验成功的乐趣。

  5、看书质疑,布置作业。

  ①通过这节课的学习,你学到了什么知识?你用了什么方法学到这些新知识的?还有什么疑问的吗?

  看书总结和质疑问难,是一堂课的重要环节。每一节成功的课,都应该留有足够的时间让学生去质疑问难,从而实现课内向课外的延伸。

  ②布置课堂作业:练习十二的第3、4、5题。

《圆锥的体积》说课稿4

  一、说教材

  本节课是北师大版义务教育标准实验教科书六年级数学下册第11页—13页的内容,这节课是在学生对长方体,正方体,圆柱体,和圆锥体的特征都有了初步的认识和了解,并在学习了圆柱的体积的基础上进行学习的,这就为本节课的学习奠定了扎实的基础,同时,也为初中阶段进一步学习几何图形知识做了一个良好的铺垫。为了做到有的放矢,我特制定以下学习目标:

  1、使学生理解圆锥体积的.推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。

  2、通过动手推导圆锥体积计算公式的过程,培养学生初步的空间观念和动手操作能力。学习重点是:掌握圆锥体积的计算公式。学习难点是:正确探索出圆锥体积和圆柱体积之间的关系。

  二、说教法

  本节课我采用的教法是启发式教学法,实验活动法,归纳总结法。教学中,既要充分发挥学生的主体作用,又要调动学生积极主动地参与教学。

  三、说学法

  动手操作法,观察发现法,自主探究法,合作交流法

  四、说教学过程

  1、复习导入,引出课题:通过复习圆锥的特征、圆柱的体积计算方法引入新课,为学生学习新知做好铺垫。

  2、揭示课题,展示目标。

  3、以旧引新,探究新知。

  通过回忆圆柱体积计算公式的推导过程,提出问题:圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?激起学生探究的欲望。此时我会拿出已经准备好了的等底等高的圆柱形和圆锥形容器,然后提问以下几个问题:这两个容器有什么共同的特征?谁的体积更大?圆柱的体积和圆锥体积之间有没有一定的数量关系?问学生:“你用什么办法验证自己的猜想呢?”这时候,肯定要有一部分聪明的或者已经预习课本的同学会说:“将圆锥形容器装满沙或水,在倒入圆柱形容器,看几次能倒满。”这时候就让同学们以小组为单位,验证他们的猜想。

  教师只需要做最总结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。如果用V表示圆锥的体积,S表示底面积,h表示高,那么就能得出圆锥体积的计算公式为:V=1/3Sh(板书,特别的用红颜色粉笔写出等底等高和公式)

  4、运用公式,解决问题

  通过“算一算”和“试一试”让学生掌握公式的运用。

  5、巩固练习,拓展深化,依次练习“练一练”中第1题,第4题和第5题。当然在练习的过程中,要随时关注学生所出现的问题,以便得到及时的解决。

  6、质疑问难,总结升华

  在此环节中,我会问学生“通过这节课的学习,你们有哪些收获,是怎样推导出圆锥的体积的公式的。

《圆锥的体积》说课稿5

  一、教材分析

  本节课是北师大版数学教材六年级下册第一单元第11~12页的内容——圆锥的体积。

  这部分内容是发展学生空间观念的内容,也是小学阶段几何初步知识的最后一个内容,是学生在了解和理解了体积和容积的含义基础上,进一步了解圆锥体积或容积;在研究了圆柱体积计算方法的基础上,教材继续渗透类比的思想,再次引导学生经历“类比猜想——验证说明”的过程,进行圆锥体积计算方法的探索。内容包括了解圆锥体积或容积,理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。

  二、学生情况

  学生已经直观认识了长方体、正方体,掌握了长方体、正方体体积的计算方法,在前面的课时中也已经经历了“类比猜想——验证说明”的探索过程,通过已有的长方体、正方体体积计算方法,学习了圆柱的体积计算方法,在此基础上,让学生再次经历类比探索去学习圆锥体积计算方法。但长方体、正方体和圆柱都是直柱体,类比和猜想圆柱体积计算方法对学生来说比较容易,但是圆锥不是直柱体,因此在探索活动中,需要引导学生提出合理的猜想。学生对这部分内容的掌握,不仅有利于掌握立体图形之间的本质联系,提高几何体知识掌握水平,同时也利于提高运用所学数学知识和方法解决一些简单实际问题的能力。

  三、教学目标

  根据新课标的具体要求,和本节课的教学内容,结合学生实际制定了以下教学目标。

  知识目标:

  1、结合具体情境和实践活动,了解圆锥的.体积或容积的含义,进一步体会物体体积和容积的含义。

  2、经历圆锥体积计算公式的推导过程,理解并掌握圆锥体积的计算公式,能正确计算圆锥体积。

  3、能运用圆锥体积的计算方法,解决有关实际问题。

  能力目标:

  培养学生的观察、操作能力,进一步丰富对空间的认识,建立空间观念,发展学生的形象思维,增强学生的应用意识。

  情感目标:

  能积极参加实验活动,培养学生探索的精神和小组合作的意识。

  四、教学重、难点

  重点:圆锥体积的计算。

  难点:理解圆锥体积与圆柱体积的关系。

  关键:经历“小实验”活动,在活动中发现规律。

  五、教法、学法

  本节课,在教法和学法上力求体现以下两方面:

  1、以讲解法、教具操作法、实验法为主,实现教学目标,在教学中,即充分发挥学生的主体作用,调动学生积极主动地参与教学全过程。

  2、教学充分发挥学生的主体作用。通过自己操作实验、观察比较、讨论小结,发现圆柱与圆锥的体积关系,从而推导出圆锥的体积计算公式。

  六、教具准备

  等底等高的圆柱体和圆锥体容器,不等底等高的圆柱和圆锥。

  七、教学环节

  环节一复习铺垫

  回忆并应用圆柱体积计算公式。通过练习巩固对圆柱体积计算公式的认识,为下面学习圆锥体积计算公式作好铺垫。

  环节二探索新知

  首先出示教材中的情境图,并提出问题:求这堆小麦的体积,实际上就是求什么?引导学生结合情境来进一步体会圆锥体积的含义。接着直接揭示课题——研究圆锥体积计算方法。

  探索圆锥体积计算方法。分为以下几个步骤完成。

  步骤一:引导学生回忆圆柱体积计算方法的推导,这样,学生可以利用类比迁移规律,从求圆柱体积的思路、方法中得到启示。然后让学生思考:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?学生很容易根据圆柱和圆锥的底面都是园,来联想到转化成圆柱。

  步骤二:放手让学生大胆的猜想如何计算圆锥的体积。学生很容易想到如果是用底面积乘高,计算出来的是圆柱的体积,而直觉会让他们想到圆锥的体积应该比圆柱体积小,但这个时候他们并没有意识到“等底等高”。让学生继续猜想应该是圆柱的几分之几,并说明猜想的依据。在猜想过程中,学生可能得出的结论多样,这个时候针对不同的结论,如:圆锥体积是圆柱体积的二分之一;圆锥体积是圆柱体积的三分之一等。教师随即出示几个大小不同,且不等底等高的圆柱和圆锥让学生仔细观察,比如:大圆锥和小圆柱,或者底面积(高)相同,但是高(底面积)不相同的圆柱和圆锥。通过观察让学生发现高和底面积如果不相同,不能找到与圆锥的关系,因此只有圆柱和圆锥等底等高才便于我们研究。

  步骤三:实验活动。在学生形成猜想后,再引导学生“验证说明”自己的猜想。展开分组活动,让学生参与操作实验,用一个空心的圆锥装满水或沙子倒入等底等高的圆柱容器中,看几次能倒满;然后再把圆柱中装满水或沙子倒入等底等高的圆锥容器中,需要倒几次才能倒完,并做好观察记录。让学生初步感知等底等高的圆柱和圆锥体积之间的关系。接着教师用一对等底等高的圆柱和圆锥。

《圆锥的体积》说课稿6

  一、说教材:

  1、本课教学内容是义务教育课程标准实验教材小学数学六年级下册的第一单元《圆柱与圆锥》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,例2、例3,相应的“做一做”及练习四的习题。

  2、本课是在学生已经掌握了圆柱体积计算和认识了圆锥的基本特征的基础上学习的,是小学阶段几何知识的最后一课。学好这一部分内容,有利于进一步发展学生的空间观念,进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

  3、教学重点:能正确运用圆锥体积计算公式求圆锥的体积。

  教学难点:理解圆锥体积公式的推导过程。

  4、教学目标:

  知识目标:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;

  能力目标:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;

  情感与价值观:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

  5、教具准备:等底等高的圆柱、圆锥一对,与圆柱等底不等高的圆锥一个,与圆柱等高不等底的.圆锥一个。

  学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,一定量的细沙。

  二、说教法:

  1、实验操作法。

  波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”因此,我在课上设计了一个实验,通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力。

  2、比较法、讨论法、发现法三法优化组合。

  几何知识具有逻辑性、严密性、系统性的特点。因此在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一”。然后再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生用不等底等高的空圆锥、空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。

  三、说学法

  我在研究教法的同时,更重视对学生学法的指导。

  1、实验操作法。

  2、尝试练习法。

  四、说教学程序:

  本节课我设计了以下五个教学程序:

  1、复习旧知,做好铺垫。

  复习圆锥的认识和圆柱的体积公式及其应用,为新知迁移做好铺垫。

  2、谈话激趣,导入新课。

  (1)我们掌握了圆柱体积公式及其应用,并认识了圆锥,这节课,我们一起来学习圆锥的体积。(板书课题)

  (2)圆锥体积和圆柱体积有什么关系吗?

  3、实验操作,探究新知。

  本环节教学是本节几何课成败的关键。为了使学生成为学习的主人,在这个环节中,我尽量给学生有对象可说,有东西可做,有问题可想,有步骤可循,让学生都能主动地操作、观察、比较、分析和归纳。

  (1)在实验时,我提出了四个问题,让学生带着问题进行操作:

  a比一比,量一量,圆柱和圆锥的底和高之间有什么关系?

  b用空圆锥装满沙,倒进空圆柱中,可以倒几次?每次结果怎样?

  c通过实验你发现了什么?

  d你能用实验说明“圆锥的体积不一定是圆柱体积的三分之一”吗?

  (2)学生汇报实验结果。说出圆锥体及计算公式。

  (3)教师归纳公式,学生记忆公式。(板书结论和公式)

  4、尝试练习,巩固提高。

  (1)同时出示例2和例3。

  ①课件示例题,指名读题,说出已知条件和所求问题;

  ②分析题意。

  ③指名板演。

  ③集体订正,指出计算圆锥体积时,一定不要忘了乘“1/3”。

  (2)巩固练习,形成技能,完成“做一做”。

  这个环节充分放手让学生自己尝试练习,可以挖掘学生的潜能,让学生体验成功的乐趣。

  5、看书质疑,布置作业。

  通过这节课的学习,你学到了什么知识?还有什么疑问的吗?看书总结和质疑,是一堂课的重要环节。每一节成功的课,都应该留有足够的时间让学生去质疑答难,从而实现课内向课外的延伸。在完成了书上的基础练习之后,设计了三个发展练习,分别是知道半径和高;直径和高;周长和高;求体积,这样即满足了基础知识的学习,又使优生能有所提高。

  以上是我对《圆锥的体积》一课的说课,如有不妥望各位老师给予帮助指导。

《圆锥的体积》说课稿7

  今天我说课的内容是《六年级数学》(人教版)下册第二单元《圆柱和圆锥》中的第二课时《圆锥的体积》。本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。

  一、说教材

  1、教材分析

  “圆锥的体积”教学是在学生学习掌握了圆的周长、面积和圆柱的体积的基础上进行教学的,并且上节课初步认识了圆锥,本节教材内容突出了探索体积计算公式的过程,应注重发展学生的操作能力、实践能力、培养创新能力,为今后学生的深层次学习和自主发展打好基础。通过本节课的学习使学生掌握圆锥体积的推导公式以及运用公式解决一些实际问题。

  2、学情分析

  学生以前学习了长方体、正方体、圆柱,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。通过前一节《圆锥的认识》,学生对圆锥的特征也有了一些了解,对学生来说,求体积并非陌生的新知识,只是像圆锥这样学生认为不规则几何体的图形,求体积有困难。但对于六年级的学生来说,绝大多数学生的动手实践能力比较强,有一定的空间观念基础,教师应帮助学生理解。

  3、教学目标

  根据教材的编写特点和意图,结合学生的认知特点,我把本课的教学目标确定为:

  (1)知识目标:

  通过观察和实验使学生理解和掌握圆锥特征和圆锥的体积公式,能运用公式正确地计算圆锥的体积。

  (2)能力目标:培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。(3)情感目标:

  通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。

  4、教学重难点

  教学重点:理解和掌握圆锥的特征、体积的计算公式

  教学难点:掌握圆锥高的测量方法和体积公式的推导过程

  5、教具准备

  多媒体、圆柱、圆锥、三角尺、直尺、水桶等

  二、说教法

  根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法、设疑诱导法为辅。教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考、操作,教师适时地演示,化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

  三、说学法

  教师要把课堂和时间还给学生,让学生有充足的时间和广阔的空间学习、探讨、商量、研究,教师只是学生学习的指导者和参与者。让学生在实际操作的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。

  四、说教学程序

  1、复习引入新课

  怎样计算圆柱的体积?

  (1)多媒体展示圆柱图形让学生计算(学生回答并计算)

  说明:V圆柱=1/3V圆锥=1/3Sh,先复习圆柱体积计算方法,抓住所学知识的内在联系,为学习圆锥的体积计算方法进行铺垫

  (2)多媒体演示圆柱体的一个底面逐渐变小直到剩一个点为止这是什么图形这个图形怎么得来的,怎么求它的体积?(学生回答教师并书写课题)

  学生回答可能出现情况:(及时给于学生鼓励)

  说明:设疑激趣,激发学生探求新知的`欲望

  2、动手操作获得新知

  (1)根据学生的回答让学生利用已有的教具(等底等高的圆柱和圆锥)小组进行动手操作探讨体积公式——这样做的目的:激发学生学习的兴趣,培养学生动手的能力和合作的能力(教师在教室中来回走动注意观察学生的操作及脸部表情,及时给于指导)

  (2)教师提问学生动手操作得出的结论

  学生回答情况两种:三倍与三分之一的关系,如果没强调等底等高教师要及时补充,这样做的目的是让学生进行班内交流,从而让学生获得更多的解题方法

  (3)通过教师引导学生能够完整的总结出圆锥体积的计算公式

  教师板书圆锥体积计算公式:V圆柱=1/3V圆锥=1/3Sh

  3、巩固练习

  (1)让学生先来解决刚开始的那个由圆柱体转换而来的圆锥体的体积

  说明:学生最先求过这个圆柱体的体积转换成的圆锥这个对于他们来说很容易,让学生学会了转换思想。然后继续出练习题

  (2)多媒体展示出三个图形:一题是书上的例题告诉底面直径和高的

  二题是告诉底面周长和高的

  三题是告诉底面半径和高的

  说明:这样做的目的就是要让学生抓住知识的内在联系来解决实际问题,把教材前后知识相串联用活教材

  4、拓展延伸

  让学生小组合作测量教具中圆锥的体积并说出你的测量方法

  说明:这样可以激发学生的动手能力、锻炼学生的思维能力和协调学生的合作能力(锻炼学生如何测量圆锥德高)教师走动引导学生,学生测量底面直径、底面周长的情况

  5、学生总结这节课所学内容

  五、说板书

  我的板书简洁明了对整节课的学习起到画龙点睛的作用。

  纵观整节课我通过创设情境、动手操作哦,调动学生的积极性,使学生最大限度的投入到观察、思考、操作、探究等活动中,亲身经历实践学习的过程。充分体现了新课程标准中提倡的“动手实践、自主探究、合作交流”的学习方式,让学生体验到学习成功的喜悦我的说课到此结束,谢谢!

《圆锥的体积》说课稿8

  我说课的内容是小学数学(人教课标版)六年级下册第二单元第二节“圆锥的体积”。本课是在学习了第一课时《圆锥的认识》后通过比较圆柱和圆锥而得出圆锥的体积的计算方法。下面我将从教材、教法、学法、教学模式、三生培养五方面加以说明。

  一、说教材

  数学课程标准强调,从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力情感态度等方面得到进一步的发展。“圆锥的体积”是在学习了圆的周长和面积,长方体、正方体、圆柱体的体积计算,以及初步认识圆锥特征的基础上进行教学的。是本单元的重点。通过本节课内容的教学,发展学生的操作能力、实践能力,培养创新精神,为今后学生的深层次学习和自主发展打好基础。六年级是小学阶段的最后一个学年,学生掌握的数学知识有一定的基础,逻辑思维能力有了一定的发展,学生在接受程度上,分析问题的能力上,以及语言表达能力上都有较明显的提高,这为理解本节课的知识提供了有力的条件。但因学生之间个性差异很大,所以本节课的教学也存在一些障碍。

  根据课程标准的要求,教材的编排特点,学生的实际情况我确定的教学目标是:

  1、情感目标:培养学生的探索精神、合作意识。

  2、知识目标:理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式,运用公式计算以及解决生活中的问题。

  3、能力目标:培养学生的空间想象力,合作交往能力、创新思维以及动手操作能力。

  重点:理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式。

  难点:圆锥体积计算公式的推导过程。

  关键:公式推导过程中:圆柱体和圆锥体必须是等底等高,则它们之间才存在必然的关系。

  二、说教法

  为了能够使学生在情境中学习数学,在活动中体验数学因此我在设计教法时,根据本节课的特点,结合小学生的认知规律,采用以下几种教法:以谈话法、实验法、观察法为主,以讨论法、练习法为辅,实现教学目标。在教学中,既充分发挥学生的主体作用,又调动学生积极主动地参与教学的全过程。

  本节课把多媒体演示引进课堂,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,使教学过程有机组合,充分显示了电化教学的优势,较之其它教学手段和方法更易实现教学过程的最优化。

  三、说学法

  教法和学法是相互联系的,“教”是为了更好地“学”,教学中充分体现出学生的主体作用,尽量让学生自己动手实践、自己想、自己说,想不到的,教师要从不同角度启发、引导学生去想,去发现。创设一定的问题情境,让学生的整个学习过程围绕着问题去观察,去讨论,去实验,去理解,去总结。

  古人说:“授人之鱼,只供一餐所需;而给人之渔,终身受用不尽。”新课程要求学生不仅要“学会”,更要“会学”。本节课采用适于学生展开观察、猜想、操作、比较、交流、讨论、归纳等教学活动,为了更好的指导学法,我利用小组合作形式组织教学。这样,一方面可以让学生去发现,体验创造获取新知,另一方面,也可以增强学生的合作意识,在活动中迸发创造性的思维火花。

  四、说教学模式

  本节课运用了小学数学情境———探究式教学模式。

  (一)、创设情境、揭示问题

  所谓的创设情境,就是指教师要在上课开始创设一种能调动学生先前经验,促进学生思维参与的探究氛围。本节课我创设了两种冰淇淋,怎么样买更合算的情景。这样做的目的,不只在于激趣,主要是让学生逐步形成一种数学的眼光,在面对现实问题时能够主动寻求用数学的方式来解决。

  (二)探究发现,建立模型

  这是学生构建新知识的重要一步,要帮助学生通过观察、实践、探索、思考、交流等活动、解释解决问题的基本策略,建立基本的数学模型。

  1、直观引入,直觉猜想

  在教学中,我首先让学生回忆,以前学过哪些物体的体积的'计算,接着猜测圆锥可能与哪个物体的体积有关?再猜测他们之间存在着什么样的关系?这一环节目的是是为了让学生把已有的知识信息与新知识建立联系,为学生调整认知结构,构建新知识奠定基础。

  2、实验探索,发现规律

  这一环节是合作学习,引导学生分小组做实验总结出等底等高的情况圆锥的体积是圆柱体积的三分之一,最后根据圆柱体积的计算方法,引导学生试着总结圆锥体积的计算公式。这样,学生亲身经历、体验了知识的形成过程,从而使学生的思维能力、动手操作能力,总结概括能力,与人合作的意识都得到了提高。

  3、启发引导,推导公式

  这一环节首先让学生根据圆柱体积的计算方式推导出圆锥体积的计算方法,然后引导学生说一说,sh各表示什么?为什么要乘三分之一。这样使学生能更深入的理解。整个这一环节我一直本着引导学生主动建构知识的重要理念,引导学生通过自主探索、合作交流、解决问题,真正掌握所学知识,发展数学能力,真正做到“动手操作、体验成功”。

  (三)、理解应用,强化体验

  因为学生在探究发现、建立模型中创造的数学知识,发现的数学方法,要有一个内化的过程,为了关注每一个孩子这一环节我设计的四个层次的练习。

  【基本练习】

  首先解决情境中的问题,到底买哪一种冰淇淋合算。然后计算圆锥冰麒麟和圆柱冰淇淋的体积。在计算圆锥冰淇淋的体积时,允许学生有选择的完成,这样对学生进行数量上和难易程度上的开放,不但关注了学困生,也促进了尖子升和特长生的发展。

  【变式练习】

  是一组判断题

  【应用练习】

  让学生解决生活中的问题。能够使学生对所学的知识再一次深化理解,并同时培养学生解决生活中问题的能力。

  【综合练习】

  把一个圆柱加工成一个最大的圆锥形零件。求削去的体积。

  这是一道思维拓展题。首先引导学生独立思考,然后再解决问题,最后得出结论。这样,不但注重了新知识的结构化,而且使学生对知识得到进一步的拓展和延伸。

  这样学生在应用中充分理解,加深了体验,使新建立的数学知识得到进一步强化。从而实现人人学习有价值的数学,不同的人在数学上得到不同的发展。

  (四)、总结归纳,提升经验

  这一环节主要引导学生对本节课的知识进行系统的归纳、还对探究发现的过程、方法、经验、进行了梳理。

  在本节课的课后我布置了一项实践性的作业,让学生用硬纸板做一个圆锥,圆柱。要求是,圆锥和圆柱的体积相等。

  操作实践是一个手脑并用的过程,是培养技能技巧,促进思维发展的一种有效手段。更是一种让学生继续获取知识的延伸性学习活动,能够提高学生的学习技能;培养学生的求知欲;巩固所学知识,扩大知识领域,并且产生知识迁移;培养学生的合作意识;让学生明白学习既没有时间限制,又没有空间限制,以培养学生良好的学习习惯。

  五、说三生培养

  在整个教学过程中,我力求照顾全体学生的学习感受,因材施教。学困生学习最基本的内容,优等生在达到课程标准要求的基础上,适当扩大知识面,拓展了思维。在教学中,简单的问题留给学困生,有难度的留给优等生,实验操作环节以强带弱,最后分层次练习,基本练习和变式练习,主要是关注学困生,同时也促进了尖子生的发展。应用练习和思维拓展主要是关注尖子生和特长生。从而使不同的学生在本节课得到不同的发展。

  总之,本节课,以教材为主源,教师为主导,学生为主题,训练为主线,思维为核心,为了每个孩子的发展为宗旨,让学生在情境中学习数学,在活动中体验数学,这样,既重视了知识的形成过程,又重视了学生的思维的发展过程,是每个孩子都在获得新知识的过程中,提高了能力发展了思维。

  这次教学大赛的要求是同题同构,目的是共同提高。我们六年组三个数学老师在选课上,备课上,制作课件中,到后来写教案设计,说课材料,真的是做到了合作。虽然是我们精心的准备了,但在教学中还是出现了很多的遗憾。

  1、多媒体课件的制作和运用不是尽善尽美。

  2、在三生培养中,对差生的关注不是很到位。

  3、课堂中有浪费现象,造成了教学时间的紧张。

  4、在小组合作中,学生的参与程度还有待提高。

  在今后的工作中,一定要多听课、多学习、多研究、多总结、多反思、使今后四十分钟的数学课堂每一分都有效。

《圆锥的体积》说课稿9

各位领导、各位同仁:

  大家好!

  今天我说课的内容是《六年级数学》(人教版)下册第二单元《圆柱和圆锥》中的第二课时《圆锥的体积》。本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。

  一、说教材

  1、教材分析

  “圆锥的体积”教学是在学生学习了立体图形——长方体、正方体、圆柱体的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。

  教材突出了探索体积计算公式的过程,引导学生在装沙或装米的实验基础上进行公式推导。通过观察,比较,分析,推理,概括和抽象,自主发现圆锥的体积计算公式,进一步积累数学活动经验.经历数学化的过程,获得解决问题的方法.

  2、学情分析

  学生以前学习了长方体、正方体,在此前又学了由曲面和圆围成的立体图形——圆柱,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。通过前一节《圆锥的认识》,学生对圆锥的特征也有了一些了解,对学生来说,求体积并非陌生的新知识,只是像圆锥这样学生认为不规则几何体的图形,求体积有困难。

  对于六年级的学生来说,绝大多数学生的动手实践能力比较强,有一定的空间观念基础,但公式的推导过程却比较抽象、枯燥,对于他们来说该部分内容是一个难点。同时对于圆锥体积计算的实际运用,从以往的经验判断,学生对3倍的关系难以理解,教师应帮助学生理解。

  3、教学目标

  知识与技能目标:通过学生参与实验,从而推导出圆锥体积的计算公式,并运用公式计算圆锥的体积;解决一些有关圆锥体积的实际问题。

  过程与方法目标:通过实验推导圆锥体积公式的.过程,增强学生的实践操作能力,并培养学生观察、比较、分析、总结归纳的学习方法。

  情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。

  4、教学重难点

  教学重点:理解和掌握公式,能正确运用公式解决实际问题

  教学难点:圆锥体积公式的推导过程

  5、教具、学具准备

  教具:一个圆柱、2个与圆柱等底、等高的圆锥、沙子;学生自制的圆柱及各类型的圆锥若干、三角尺、直尺

  二、说教法

  在公式推导阶段,为了打破枯燥无味的公式推导过程,在教授本节课时,结合小学生的认知规律,以引导法、实验法、观察法,探索法为主,以讨论法、练习法为辅,实现教学目标。在教学中,从:①、让学生测量自制圆柱、圆锥的高(在上一节让学生自己动手制作圆柱、圆锥);②、让学生用自制的等底等高、等高不等底、等底不等高圆柱与圆锥分别装沙实验入手。通过学生自己动手测量、实验操作后总结实验规律。《圆锥的体积》说课稿

  通过小组实验、讨论、交流,归纳、推导出圆锥体积的计算公式:v=《圆锥的体积》说课稿sh

  在公式运用方面:采取逐步深入的模式,让学生讨论在:①、已知圆锥的高与底面半径;②、已知圆锥的高与底面直径;③、已知圆锥的高与底面周长三种情况下,如何使用公式计算。然后通过让学生列举身边的实例,引入实际运用。

  这样,既充分发挥了学生的主体作用,又调动学生积极主动地参与教学的全过程。力求为学生创造一个自主探索与合作交流的环境,引导学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。

  三、说学法

  以往的教学是教师处于主导地位,学生基本上是处于被动的听讲,被灌输者的被动地位,这样教出来的学生没有灵活性,随机应变的能力差,发现问题,分析问题,解决问题的能力差,学生的情感也低落。

  新课改要求:教师要把课堂和时间还给学生,让学生有充足的时间和广阔的空间学习、探讨、商量、研究,教师只是学生学习的指导者和参与者。

  针对本节,在学法上主要采取:

  1、学生在学习圆锥体积公式的推导时,通过自己动手进行操作实验、观察比较、讨论小结,最终推导出圆锥的计算公式,从而初步学会运用实验的方法来探索新知识。

  2、充分发挥学生的主体作用:学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想。

  3、教师提出与所学课程内容有关的恰当合理的问题,让学生在分析、讨论、探索的前提下争取自己解决,对于有一定困难的问题,老师再从中提醒、点拨。从而挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

  四、说教学程序

  本节课的教学,我安排了6个教学程序:

  1、学生自主探索,预习

  第一步:回忆《圆锥的认识》

  (1)让学生将他们准备的沙子或米拿到老师这里来,我们玩堆沙子游戏。我把它倒在桌子上,缓慢地倒,形成一个近似的圆锥,你们看这是什么形状?

  引导学生从沙堆的形状:底面是个圆,有一个顶点,侧面是一个斜面,抽象画出圆锥的图形(边提问、边引导、边画图板书)。

  顶点

  圆心

  高

  (2)让学生在图中找出圆锥的顶点、画出圆锥的高。向学生明确:从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示板书这条高)。

  (3)图里画的这条高和底面圆的所有直径有什么关系?

  (4)怎样测量圆锥高?(让学生根据上述方法使用三角尺、直尺测量自制圆锥的高。)

  第二步:回忆圆柱体积的计算公式

  画一个与上图圆锥等底、等高的圆柱,指名学生回答,并板书公式:

  圆柱的体积=底面积×高

  v圆柱=s·h

  第三步:课堂展示

  (1)我想知道堆起的沙堆的体积怎么办?

  (2)能不能也通过已学过的图形来求呢?转化成什么图形最合适?

  (3)你感觉它和前面学过的那个图形联系密切?

  (4)引导:可以通过实验的方法,得到计算圆锥(沙堆)体积的公式。

  2、实验操作

  这个环节分两个步骤进行。

《圆锥的体积》说课稿10

  【教材分析】

  本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.

  【设计理念】

  数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。

  【教学目标】

  1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

  2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。

  3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。

  【教学重点】圆锥体积公式的理解,并能运用公式求圆锥的体积。

  【教学难点】圆锥体积公式的推导

  【学情分析】

  学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对 于新的知识教学,他们一定能表现出极大的热情。

  【教学流程】

  一、复习导入。

  1、说出圆柱和圆锥各部分的名称及特征:

  2、设疑:圆柱的体积公式用字母表示是(V=s h )。

  圆锥的`体积公式用字母表示是( ? )。

  3、回顾圆柱体积计算公式的推导过程。能不能用转化的方法推导出圆锥的体积计算公式呢?

  二、创设问题,实验探究。

  准备两个容器,一个圆柱和一个圆锥,看看圆柱与圆锥的底和高各有什么关系?

  用适量的水探究等底等高圆柱与圆锥的体积之间有什么关系?

  分析归纳总结试验结论。

  用字母表示出它们的关系。

  三、实践运用,提升技能。

  教学例题3.

  四、练习巩固,提高能力。

  1、口答题。

  2、判断题。

  3、拓展运用。

《圆锥的体积》说课稿11

  一、说教材

  1、教材简析

  首先说一说这节课的内容。圆锥是小学几何初步知识最后一个单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上又学习的一种新的立体图形。(播放课件)圆锥的体积也是在学习过长方体、正方体和圆柱体积的基础上的又一个延伸,也为以后学生系统学习立体几何打下基础。(播放体积公式课件)

  2、学情分析

  通过前几节课的学习,学生已经对圆柱、圆锥的基本特征和各部分名称有了清楚的认识,知道了圆柱体积的计算方法,并能运用圆柱体积的计算公式解决具体问题,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。绝大多数学生的动手实践能力比较强,但学生的空间想像能力因年龄特点,还有待进一步加强训练。

  3、教学目标

  根据以上所述我制定了这节课的教学目标:

  知识与技能目标:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;

  过程与方法目标:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;

  情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

  4、教学重难点

  根据学生学情和教学目标,我确立了以下教学重难点。

  教学重点:能正确运用圆锥的体积计算公式求圆锥的体积。

  教学难点:理解圆锥体积公式的推导过程。

  5、教具、学具准备

  多媒体教学软件、空心圆柱、圆锥容器、装有水的水桶。

  二、说教法

  《数学课程标准》明确指出,教师应激发学生的学习积极性,给学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、思想和方法,获得广泛的数学活动经验。本节课我主要采用引导发现法、实验操作法,同时借助多媒体等教学手段,增大教学容量,提高教学质量。

  波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”因此,我在课堂上设计的实验,让学生动手操作,推导出圆锥的体积公式,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力。

  三、说学法

  有句话说的非常好“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究。因此我在讲求教法的同时,更重视对学生学法的指导。

  1、实验转化法

  有些知识单凭解说是无法让学生真正理解的,只有通过实验,反复操作,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备;其次,告诉他们操作的方法步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。

  2、尝试练习法

  苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在教学例题时,让学生尝试自己独立解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

  四、说教学程序

  本节课我设计了以下六个教学程序:

  1、复习旧知,做好铺垫。

  利用复习圆柱、圆锥的认识和圆柱的体积公式的'推导及其应用,为新知识的迁移做好铺垫。通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切,从而产生学习新知的欲望。

  2、谈话激趣,导入新课。

  很多同学都喜欢吃冰淇淋,你们看,冰淇淋蛋筒的形状是什么样的?你们有没有想过一个圆锥形蛋筒能装多少冰淇淋呢?(板书课题)怎样求它的体积?能不能把它转化成我们已经学过的图形的体积来求?转化成什么图形最合适?猜猜看?下面我们就来探讨这个问题。(通过一系列问题聊天,激发兴趣,活跃气氛引出课题)

  3、实验操作,探究新知。

  这个环节分三个步骤进行。

  第一步:实验操作

  学生通过刚才的谈话已经迫切希望通过实验来证实自己的猜想,所以学习兴趣盎然,注意力高度集中,积极投入到实验中。

  1、我准备出一个圆柱和一个圆锥容器,先让学生们自己观察两个物体的联系,引导他们说出等底等高。(此过程我会拿着两个容器到学生中去让他们不仅仅能看到还能摸一摸,从而更直观的感受等底等高。)

  2、质疑生趣

  我会抛出问题:同学们你们说如果把圆锥倒满水然后往圆柱里放,几次能把圆柱也放满水?(让学生根据自己的认知大胆猜测)

  3、动手操作,实验出真知

  带着疑问、猜测做实验。请两组学生进行操作,其他学生一起帮他们做记录。实验结果就是三次能装满。(播放课件演示实验过程)

  4、反复质疑,实验解决

  是不是所有的圆锥都是正好用三次就倒满这个圆柱呢?(强化对等底等高的理解,小组讨论各抒己见)这时拿一个小一点的圆锥容器继续做一次实验。实验证明只有等底等高的圆锥装满水往圆柱里倒需要三次。

  第二步:推导公式

  1、讨论:圆锥的体积与圆柱的体积有什么关系?让学生充分交流。最终达成共识圆柱的体积是等底等高圆锥体积的3倍,即圆锥体积是等底等高圆柱体积的。这时我利用多媒体演示圆柱容器里的水体积的分解,再次肯定学生自己的观点的准确性。

  2、圆锥的体积怎样计算?计算公式是什么?根据学生的回答板书:(出示课件)V锥=1/3 SH本步骤从感性认识上升到理性认识,进一步理解和巩固新知,培养学生严谨的逻辑思维能力,语言表达的条理性、准确性,突出教学重点。

  4、尝试练习,巩固提高。

  以上两道题,指名学生板书解题过程,集体订正。及时把探索到的新知应用于实践,教师从中得到教学信息反馈以便调整教学内容,学生体验到“再创造”与“成功”的喜悦,进一步激发他们学习的自主性。

  5、拓展深化,综合运用

  工地上有一个近似于圆锥的沙堆。你能想办法算出它的体积吗?说说测量和计算的方法。

  练习设计从基本题入手,过渡到变式题,发展到综合题,引伸到思考题,符合由浅入深、循序渐进的教学原则。练习过程中训练了学生的解题能力和技巧,运用所学知识解决实际问题的能力。

  6、评价反思,自我提升

  课末,我通过聊天形式引导学生通过反思、评价,梳理本课知识点,形成系统的知识结构,进一步巩固本课教学内容。以下就是我进行的话题。

  ①这节课你学会了什么?这里用提问的方式引导学生回顾归纳所学知识内容、学习方法,能强化知识的理解和记忆,促进学生掌握学法。

  ②对自己和别人你有什么话要说?让学生对自己和别人的学习过程及学习效果进行评价,能强化自信、自立、自强意识,激发自主发展的内在动力。

  ③布置作业:练习四的有关练习。适量的作业可及时反馈学生学习情况,培养学生良好的学习习惯和品质。

  五、板书设计

  根据本课重难点和学生认知特点,我设计了简洁明了而又形象直观的板书。这样的板书设计体现了新知的形成过程,又显示了具体的解题方法,突出教学重点,形象直观。

  六、教学反思

  1.要联系生活学数学。在教学中我深切的体会到要让学生学好数学就一定要让他们明白:数学来源于生活,最终又应用于生活.要让学生爱数学就先让他们爱生活.这就需要我们在备课时不局限于教材,要结合生活实际去备课.2.教师一定要敢于给学生大量的时间与空间,让学生经历“发现问题——大胆猜想——实验验证——解决问题”的全过程,让他们的才能与智慧得以施展,以学生为主体的观念贯穿始终,充分发挥学生的自主性,生成和构建自己的知识体系。

  3.学生课后反馈上来的问题是计算问题很大,公式会用但是计算出现问题了,以后要多锻炼学生的计算能力。

  (强两点我简单的概括了这节课我的理论支撑和设计构想,第三点是课后学生反映出来的问题。)本节课我的设计体现了数学核心素养中的数感、空间观念几何直观、数据分析、运算能力及推理能力等几方面。初步探究中,效果还需有待观察。

《圆锥的体积》说课稿12

  一、说教材

  (一)、圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。

  内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识和方法解决一些简单实际问题的能力。

  (二)、教学目标

  1、通过实验,使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积

  2、培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。

  3、渗透事物间相互联系的辩证唯物主义观点的启蒙教育。

  (三)、教学重点、难点和关键

  重点:理解和掌握圆锥体积的计算公式。

  难点:理解圆柱和圆锥等底等高时体积间的倍数关系。

  关键:组织学生动手做实验,引导学生动脑、动手推导出圆锥体积的计算公式。

  二、说教法

  以谈话法、实验法为主,讨论法、读书指导法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。

  小学阶段学习的几何知识是直观几何。小学生学习几何知识不是严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识。主要引导学生做了三个实验。一是比较圆柱和圆锥是等底等高,强调圆柱和圆锥是等底等高这个必要条件;二是做在圆锥中倒的实验,使学生理解等底等高的圆柱和圆锥存在着一定的倍数关系;三是做在小圆锥里装满沙土往大圆柱中倒的实验,再次强调只有等底等高的圆柱和圆锥存在着的倍数关系,搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生的观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。突出了教学重点。

  三、说学法

  1、教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生不能想的,教师启发、引导学生想,学生能说的尽量让学生自己说。学生的整个学习过程围绕着教师创设的问题情境之中。

  2、学生学习圆锥体积公式的推导时,通过自己操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的方法探索新知识。

  四、说教学程序

  (一)、导入课题

  1、让学生自己找出自己桌子上的圆柱体,指出它的底面和高。

  回答:(1)已知底面积和高怎样求它的体积?(2)已知底面半径、直径或周长又怎样求它的体积?

  这样,学生可以利用迁移规律,从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法。

  2、让学生自己找出圆锥体,指出它的底面和高,同时引出课题:圆锥的体积

  (二)讲授新知

  1、(1)引入新课

  引导学生回忆圆柱的体积计算公式是怎样推导的?想:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?

  (2)教学圆锥体积公式

  首先,学生带着如下三个问题自学课文,(电脑出示):(1)用什么方法可以得到计算圆锥体积的公式?(2)圆柱和圆锥等底等高是什么意思?(3)得出了什么结论?圆锥体积的计算公式是什么?

  其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥的3倍。

  第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V= 1/3Sh。

  第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。

  第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。

  练习:

  填空:(口答)(电脑出示)等底等高的圆柱和圆锥,圆锥的体积是15立方厘米,圆柱的体积是( )立方厘米,如果圆柱的体积是a立方厘米,圆锥的体积是( )立方厘米。

  2、教学应用体积公式计算体积(电脑出示题目)

  ①基本练习。一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?(学生独立做在练习本上,教师行间巡视、指导,做完后集体订正)。

  ②变式练习。只列式不计算。将上题中的.已知条件:“底面积是25平方分米”,依次改为“半径是3分米”、“直径是6分米”、“周长是12.56厘米”引导学生想:要求体积,先要求什么?

  ③小结:要求圆锥的体积,不论已知条件如何改变,都必须先求出底面积。求圆锥的体积,不但不能忘记乘以1/3,还要注意单位统一。

  3、 教学例3(出示例3)

  例3:工地上有一些沙子,堆起来近似于一个圆锥,测得底面直径是4米,高是1.2米。这堆沙子大约有多少立方米?(得数保留两位小数。)

  学生读题、想:要求这堆沙子大约有多少立方米,必须先求什么?(先分组讨论,再尝试练习,个别板演,然后集体评讲。)

  通过这道练习,培养学生解决实际问题的能力,了解数学与生活的紧密联系。

  4 、操作练习。

  让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,这道题就地取材,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。

  (三)、巩固应用

  1、做P27-28练习九的第3、4、7、8题,(学生练习,教师巡视,个别辅导,特别注意对学习有困难的学生的辅导。)

  2、思考题:一个长15厘米,宽6厘米,高4厘米的长方体木料,用它制成一个最大的圆锥体,这个圆锥体的体积是多少?(此题给学有余力的学生练习)。

  (四)全课总结,课外延伸。

  让学生说说这节课的收获,还有什么不懂得的问题?并在课后从生活中找一个圆锥形物体,想办法计算出它的体积。这样结尾,激发了学生到生活中继续探究数学问题的兴趣。

  总之,本节课教学,学生变被动学习为主动获取,掌握了学习知识的方法,真正体现了陶行之先生所说的:“教正是为了不教”的教学思想.

《圆锥的体积》说课稿13

尊敬的各位领导、老师:

  大家上午好!今天,我说课的题目是《圆锥的体积》,下面我将从教材分析、学情分析、教学目标、教学重难点、教法学法、教学过程,板书设计这几个方面展开我的说课。

  一、说教材

  《圆锥的体积》这部分内容是小学阶段几何知识的重难点部分,在学生学习了立体图形——长方体、正方体、圆柱的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。

  教材突出了探索体积公式的过程,引导学生在装沙和装米的实验基础上进行公式推导。

  二、说学情

  本节课是学生在学习了长方体、正方体、圆柱这三种立体图形以及认识了圆锥特征的基础上进行的,学生已经具有了一定的“转化思想”和“类推能力”。在展开研究中,学生分组操作,通过量一量、倒沙子的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。

  三、说教学重难点

  根据对教材和学情的分析,我制定以下三维教学目标:

  知识与技能目标:掌握圆锥的体积公式,并能应用公式解决简单的实际问题。

  过程与方法目标:通过观察、操作、猜测、验证等数学活动,发展学生的推理能力。

  情感态度与价值观目标:在体积公式的推导过程中,渗透转化的数学思想。

  四、说教学重难点

  教学重点:理解并掌握圆锥体积的计算方法,并能解决简单的`实际问题。

  教学难点:理解圆锥体积公式的推导过程。

  说教法学法

  为了突出重点突破难点,在教法上,我选择以动手操作法为主,以引导发现法、设疑激趣法、多媒体辅助法为辅,让学生全面、全程地参与教学的每一个环节。

  学法上:我充分发挥学生的主体作用,以小组合作学习为主要形式,让学生全面参与新知的发生、发展和形成的过程。

  说教学过程

  课堂教学是学生获取数学知识,发展能力的重要途径,结合“学.学.导.练”的教学模式,我设计了以下四个教学环节:

  第一环节:自主学习

  第二环节合作学习

  第三环节:教师讲导

  第四环节:精练强化

  五、说板书设计

  圆锥的体积=×圆柱的体积=×底面积×高

  S=sh

《圆锥的体积》说课稿14

  今天我说课的内容是九年义务教育六年制小学数学(人教版)第十二册第三单元“圆锥的体积”。下面将从教材分析、教法、学法、教学过程等四方面加以说明。

  一、教材分析

  1、教材的地位和作用

  “圆锥的体积”是在学习了圆的周长和面积,长方体、正方体、圆柱体的体积计算,以及初步认识圆锥特征的基础上进行教学的。通过本节课内容的教学,发展学生的操作能力、实践能力,培养创新精神,为今后学生的深层次学习和自主发展打好基础。

  2、教学目标

  (1)探索并掌握圆锥体积的计算方法

  (2)经历观察、猜想、实验等过程,发展学生操作能力、归纳推理能力,培养创新精神。

  (3)培养学生身主探索与合作交流的精神,渗透转化的数学思候和方法。

  3、教学重点、难点

  (1)重点:探索并掌握圆锥的体积的计算方法。

  (2)难点:理解圆锥体积计算方法的推导过程。

  二、教法

  《数学课程标准》明确指出,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学和知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课我主要采用引导发现法|实验操作法,同时借助多媒体等教学手段,增大教学容量,提高教学质量。

  三、学法

  古人说:“授人之鱼,只供一餐所需;而给人之渔,终身爱用不尽。”素质教育也要求学生装不仅“学会”,更要“会学”。这节课我将指导学生动手实验、合作交流、归纳推理、浓度尝试练习等方法,使学生成为数学学习的主人。

  结合教法、学法,教具、学具准备有:

  1、多媒体教学软件

  2、多个空心圆柱、圆锥容器

  3、装有水的水桶

  四、教学过程设计

  (一)观察发现

  1、(电脑出示)一个圆柱体,提问:怎样计算圆柱的体积?

  2、(电脑演示)把圆柱的上面逐渐缩小,一直缩小成一点,这时圆柱体就变成了一个圆锥体。提问:你有什么发现和想法?

  3、板书课题

  本环节由复习提问开始,以旧引新。电脑演示直观形象,动态地展现了变化过程,渗透转化的数学思想和方法。引导学生观察发现,大胆猜想,激发了学生的学习兴趣和强烈的探究欲望,为下面的推导圆锥的体积起到铺垫作用,从而自然导入新课。

  (二)探究创新

  这个环节分三个步骤进行。

  第一步“实验操作”

  学生迫切希望通过实验来证实自己的猜想,所以学习兴趣盎然,注意力高度集中,积极投入到实验中。

  1、各学习小组拿出准备好的一个圆柱体和A、B、C、D四个圆锥体(其中只有A、D与圆柱等底等高),分别用四个圆锥装满水倒入圆柱中,观察各要几次倒满,并把实验情况做好记录。提示思考“通过实验你发现了什么?

  当学生发现A、D两个圆锥所用的次数不定时,设疑:A、D两个圆锥与圆柱有什么关系呢?

  学生得出AD两个圆锥与圆柱等底等高。再次设疑:是不是所有的.圆锥都是正好用三次就倒满面与它等底等高的圆柱呢?从而进入第二层实验。

  2、各学习小组再拿大小不一、等底等高的圆柱与圆锥两对,用两个圆锥装满水后分别倒入与它等底等高的圆柱中,观察各要几次正好倒满。

  3、这一步通过实验操作,既能培养学生观察、比较、分析及语言表达能力,更能学会与人合作、与人交流思维的过程和结果。实验没有像教科书那样直接给出一组等底等高的圆柱和圆锥容器,是因为那样操作,学生只是按现有程序演示了一下书本上的结论而已,既无发现,更无创新,反而容易忽视等底等高这一前提条件。没有用沙土而用水做实验,因为沙土颗粒之间有空隙,结果不十分准确。我设计的实验操作过程,与科学研究相类似,注重科学性、全面性,学生操作自由度大,有利于学生创新力的发挥,有利于创新能力的形成。

  第二步:推导公式

  1、讨论:圆锥的体积与圆柱的体积有什么关系?让学生充分交流后达成共识“圆锥的体积是和它等底等高的圆柱体积的三分之一。

  2、圆锥的体积怎样计算?计算公式是什么?根据学生的回答板书:V锥=1/3 SH

  本步骤从感性认识上升到理性认识,进一步理解和巩固新知,培养学生严谨的逻辑思维能力,语言表达的条理性、准确性,并突出教学重点。

  第三步:尝试解题

  1、学生阅读教科书刊42页内容,找出关键句、划出重点词。这样做是为了提高学生的数学阅读能力。

  2、放手让学生尝试独立解答例1、例2,指名学生板示解题过程,集体订正。及时把探索到的新知应用于实践,教师从中得到教学信息反馈以便调整教学内容,学生体验到“再创造”与“成功”的喜悦,进一步激发他们学习的自主性。

  (三)应用深化

  这个环节是把已抽象化了的概念应用到新折情境中去,是概念的复现和深化,主要以练习形式进行,具体设计如下:

  1、基本练习

  (1)判断对错。

  (2)圆锥体积是圆柱体积的确良1/3。()

  (3)圆柱体积等于与它等底等高的圆锥体积的3倍。()

  (4)一个圆柱体积是45立方厘米,与它等底等高的圆锥体积是15立方厘米。()

  (5)教科书43页“做一做”的1、2题。

  2、综合练习

  (1)一个圆锥底面周长是31.4厘米,高是12厘米。它的体积是多少立方厘米?

  (2)一个底面积是12056平方厘米的圆锥体,这个圆锥体的底面积是多少?

  3、思考讨论题

  (电脑演示)工地上有一个近似于圆锥的沙堆。你能想办法算出它的体积吗?说说测量和计算的方法。

  练习设计从基本题入手,过渡到变式题,发展到综合题,引伸到思考题,符合由浅入深、循序渐进的教学原则。练习过程中训练了学生装的解题能力和技巧,运用所学知识解决实际问题的能力。

  (四)回归评价

  1、这节课你学会了什么?这里用提问的方式引导学生回顾归纳所学知识内容、学习方法,能强化知识的理解和记忆,促进学生掌握学法。

  2、对自己和别人你有什么话要说?学生对自己和别人的学习过程及学习效果进行评价,能强化自信、自立、自强意识,激发自主发展的内动力。

  3、布置作业:教科书44页第3题。适量的作业可及时反馈学生学习情况,培养学生良好的学习习惯和品质。

  板书设计:(略)

  这样的板书设计体现了新知的形成过程,又显示了具体的解题方法,突出教学重点,简洁明了。

《圆锥的体积》说课稿15

  一、说教材

  1、本节教材是义务教育小学数学(苏教版)六年制第十二册第二单元《圆柱和圆锥》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导、例五、相应的“试一试”及“练一练”。

  2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

  3、教学重、难点:

  ⑴教学重点:能正确运用圆锥体积计算公式求圆锥的体积;

  ⑵教学难点:理解圆锥体积公式的推导过程。

  4、教学目标:

  ⑴知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;

  ⑵能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;

  ⑶德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

  5、教、学具准备:⑴教具准备:等底等高的圆柱、圆锥一对;

  ⑵学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,准备一定量的细沙。

  二、说教法

  著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而是要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:

  1、实验操作法。波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”因此,我在学生已经认识圆锥的基础上,设计了一个实验:通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。

  2、比较法、讨论法、发现法三法优化组合。几何知识具有逻辑性、严密性、系统性的特点。因此,在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一。”然后,再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生理解“等底等高”的重要意义,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。

  三、说学法

  “人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此,我在讲求教法的同时,更重视对学生学法的指导。

  1、实验转化法

  有些知识单凭解说是无法让学生真正理解的,只有通过实验,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法、步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样,通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。

  2、尝试练习法

  苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在学习例五时,放手让学生尝试自己自己去发现、总结、归纳,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的'积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

  四、说教学程序

  本节课我设计了以下四个教学程序:

  1、谈话导入

  ⑴出示圆柱:如果想知道这个容器的容积,怎么办?

  ⑵出示圆锥:如果想知道这个容器的容积,怎么办?

  2、教学例五

  ⑴引导观察:这个圆柱和圆锥有什么相同的地方?

  ⑵估计一下:这个圆锥的体积是圆柱体积的几分之几?

  ⑶讨论:可以用什么方法来验证你的估计?

  ⑷分组验证;引导学生用适合的方法进行操作验证。

  ⑸交流:说说自己小组是怎么验证的,得到的结论是什么?

  ⑹讨论:①通过实验,我们知道这个圆锥的容积是这个圆柱容积的三分之一,那能不能说圆锥的体积就是圆柱的体积的三分之一?为什么?应该怎么说才准确?②那怎么算出这个圆锥的容积呢?③推导出圆锥体积的公式(师板书)。④如果已知r和h圆锥体积公式还可以怎样计算?如果已知d和h圆锥体积公式怎样计算?

  ⑺完成“试一试”。

  3、巩固练习

  做“练一练”。

  4、归纳总结

  通过本节课你有什么收获?有哪些问题需要我们今后注意?

【《圆锥的体积》说课稿】相关文章:

《圆锥的体积》说课稿07-22

圆锥的体积说课稿03-02

圆锥的体积说课稿05-15

《圆锥的体积》说课稿15篇11-10

圆锥体积说课稿11-13

《圆锥的体积》说课稿(15篇)02-16

小学数学《圆锥的体积》说课稿02-20

【精选】《圆锥体积》说课稿05-15

《圆锥体积》说课稿05-15

Copyright©2003-2024xianxue.com版权所有