- 相关推荐
《比例的应用》说课稿
作为一名专为他人授业解惑的人民教师,往往需要进行说课稿编写工作,是说课取得成功的前提。那么问题来了,说课稿应该怎么写?以下是小编精心整理的《比例的应用》说课稿,欢迎阅读与收藏。
《比例的应用》说课稿1
各位评委老师:
大家上午好!
我来自前进小学,我的名字是张宏,今天我为大家带来的是六年级数学下册《比例尺的应用》一节课,希望各位老师多提宝贵意见,下面我将从:说教材、说目标、说重点、说方法、说教学过程等几个方面进行说课:
一、说教材
《比例尺的应用》第一课时。这节课是在学生学完“比例尺的意义”、后安排的内容。这部分内容是学生学习有关地图、工程图纸的计算的基础。比例尺在生活中也有广泛应用,学好它也具有很好的现实意义。
二、说教学目标
通过本课时的学习,是学生进一步掌握比例尺的意义,以及有关的数量关系式,掌握求实际距离的解决方法,并会解答这类应用题,培养学生解决实际问题的能力。使学生进一步体会学习数学的价值,培养学生的应用意识。结合具体情境,对学生进行爱祖国,爱家乡教育。
三.说重、难点
本课的重点是能根据比例尺和图上距离正确求出实际距离。在设知数时,由于图上距离和实际距离所使用的单位不同,因此教学难点是设未知数时使用哪个长度单位。
四.说教学方法
这节课是学生在掌握了比例尺的含义的基础上展开的,让学生根据比例尺的意义来求实际距离或者是图上距离。解决这类问题学生会有不同的方法,应该允许他们按照自己的思考方法进行解答。在引导学生进一步理解不同算法时,特别要引导学生理解和掌握用比例式求实际距离的方法,帮助学生把握不同算法之间的联系。
根据比例尺=图上距离:实际距离以及学生的不同解法,可以归纳如下:
图上距离=实际距离×比例尺;
实际距离=图上距离÷比例尺。
在计算的过程中关键还是要让学生注意单位的统一。在用解比例的方法求实际距离时,要和学生强调解设中单位还应该是厘米,因为图上距离的单位就是厘米,所以要统一。
对比例尺意义的'理解是解答这类问题的关键,在理解比例尺时,一定要结合图形的放大与缩小,这样有助于学生对解题方法的掌握。
教材上介绍了3种解题思路,但我觉得前两种的思考方法是一样的。且第2种思路中“比例尺1:8000,也就是图上1厘米,表示实际距离80米”,这样的理解有跳跃性,我觉得还是让学生理解为“图上1厘米,表示实际距离8000厘米”,最后让学生看问题所求的单位名称与计算结果是否一致,如果不一样,需要统一单位,这样学生比较好理解。用比例的方法来解答这类问题,可能学生对这样的解法和方程解有一样的感觉,怕麻烦!但作为一种新的解题思路,必须让学生掌握,所以今天的课堂教学中,我准备让学生这两种思路都掌握。在以后的练习中,如果题目没有要求解题方法,那么学生可以用自己喜欢的方式来解答。
五、说教学程序
1、复习准备
本节课是紧接着前一节课的学习内容展开的进一步研究,所以,在学习新知道之前,对前一节课所学知识进行积极的回忆,有利于学生主动应用已有知识学习新知识,也有利于学生获得整体的,系统的知识。因此,我一开始按摆了复习。
2、联系生活学新知
参与是发展的前提,兴趣是参与的内驱力。让学生主动参与数学学习活动是促进学生发展的前提,学生只有在参与中才能得到发展。要让学生主动参与数学学习活动,必须激发起学生的学习动机。而学习兴趣是学习动机中最现实、最活跃的成分,是学习活动的强化剂,它在学生的学习活动中,起着巨大的推动和内驱作用。趣味性是使学生产生学习兴趣的重要途径。能使学生兴趣盎然地投入到学习活动中去。这里我没用课本中的例题,而是根据实际改编的。我们知道,数学源于生活,因此数学教学要紧密联系学生的生活实际,捕捉贴近学生的生活的素材,这样会使冰冷的数学产生亲和力,使学生感到亲切,也是“人人学有价值的数学”的生动体现。接下来分析条件和问题。在设知数时,使用哪个长度单位,是本节课的教学难点,板书中,我故意空出来。提问:你觉得这里设什么单位更便于计算?然后用红笔加以强调。再写出关系式,接下来让学生自己对照列方程解答。
设未知数列出方程,再由学生自主选择自己喜欢的方法解答。体现教师的主导与学生的主体作用。
接着结合岚皋地图,设计了课中小练习,让学生从生活中寻找数学的素材,感受生活中处处有数学,学习数学如身临其境,这样就会产生亲切感,有利于形成似曾相识的接纳心理。
之后进行了课中小结:怎样求实际距离?要哪些条件?
3、巩固练习
数学的练习是使学生掌握系统的数学基础知识,训练技能、技巧的重要手段,也是培养学生能力、发展学生智力的重要途径。
4、课堂小结,让学生对本节课的知识进行回顾整理。形成完整的知识体系。
《比例的应用》说课稿2
数学与社会密切相联,现实生活中蕴含着着大量的数学信息,数学在现实生活中有着广泛的应用。20xx版《数学课程标准》在总目标中提到“要引导学生体会数学与生活之间的联系,运用数学的思维方式进行思考,增强提出问题、分析解决问题的能力。
《用比例解应用题》是人教版实验教材第十二册p59—60页的内容,属于“数与代数”领域中“数的概念”的综合应用。本课时内容既是“归一、归总”等乘除法应用题的延续和深化,又是学习7——9年级相关知识的重要基础。教材借助例5和例6分别呈现了运用正反比例的意义来解答应用题的过程;展示图中男、女同学的"思维交流”,点明了“一题可以多解”,勾起学生对已有知识经验的回忆,体现知识之间的联系。通过本节课的教学力求加深学生对正反比例意义的理解,通过正确判断相关联量的比例关系学会用比例解决简单的实际问题;在经历解决问题的过程中,诱发积极情感,训练有序思维,引导学生体验解决问题的策略,在发现、归纳中增强应用意识,提升分析能力、判断和推理能力;获取基本的思考方法和计算,形成方法模型。
学习该内容之前,学生已经理解了乘除法运算的意义和正反比例意义;会应用比例基本性质解比例,会判断正、反比例关系;会分析解答归一、归总应用题。在生活中,学生已有较多的经历和体验,如,学生从家到学校,如果速度快,则用时少;如果速度慢,则用时多。又如:买同样价钱的中性笔,买的支数少,用的钱少;买的支数多,则用的钱多。……正反比例的生活现象学生虽然有很多的经历体验,但是在解决具体问题的过程中,学生可能对不常用相关联量的比例关系判断有一定困难;虽然能够在自主合作、思考交流中获取一些分析解答方法,但是“有序思维”的习惯比较欠缺,难以用简明的语言概括总结出分析解答方法,形成方法模型。
为有效达成教学目标,我设计了“竞比激趣,巩固旧知——自主合作,探究新知——练习深化,构建模型——拓展延伸,激活思维”的四环节教学流程引导学生经历比例在实际情境中的数学发展的过程,帮助其形成方法,构建模型。下面结合具体的流程设计谈一谈我对本节课有效教学策略的思考。
一、竞比激趣,巩固旧知
教育家孔子说:“知之者不如好之者,好之者不如乐之者”。《标准》也强调在教学中应关注学生情感态度的发展,找准学生探究新知的“最近发展区”,为学生营造轻松愉悦的学习氛围,以更好激发其参与学习的积极性、主动性,顺利实现新旧知识的衔接过渡,迁移类推。
1、创设趣味性挑战情境,诱发积极情感。
为了激发学生积极的学习情感,温故新知的必备基础,开课,我以“夺红旗”的形式[如下图] 呈现常用的关联量让学生在趣味性的挑战情境中,判断相关联的量在什么情况下成什么比例关系?引起学生对相关知识经验的回忆。
2、巩固强化判断方法,贮备探究基础。
学生判断后,提问:你是怎样分析判断的?能不能根据自己的理解用简明的话总结一下判断方法?
引导学生在思考、总结归纳中强化“找三定一写关系”的分析判断方法,为探究用比例解决问题的分析解答,做好相关准备。
[“找三定一写关系”,“找三”是指读题分析找出三个相关联的量;“定一”是指,分析三个量确定一个不变的量;“写关系”就是根据“找三定一”的分析,写出关系式。]
二、自主合作,探究新知
自主、合作、探究是新课程倡导的主要学习方式。《标准》强调,学生是数学学习的主人,教学中教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课,为了使学生更好地进行独立思考、合作交流等学习活动,我采用“目标导学”的方式让学生自主合作,探究新知。
1、目标导学,独立思考。
揭示课题后,出示自学目标:
1:用以前的方法列式计算,说说每步算式求的是什么?
2:学习例5、例6的解答过程,试着用1、2、3、4、5……的先后顺序说说是怎样解答这道题的?
3:对比观察例5、例6,说说它们有什么异同点?
4:用以前的'方法解答和用比例解答,在方法上有什么联系吗?
目标的呈现为自学提供了明确的方向,围绕目标,他们会思考:用比例解决问题先干什么?后干什么?分几步分析解答?哪一步是最难的?以前的解法和现在的解法有联系吗?通过这些思考分析活动,他们会有一些收获。
2、小组合作,交流收获。
通过目标导学,学生在收获的同时,也可能遇到思维障碍,此时再给他们提供合作的机会,在小组内进行交流,相互学习,然后在全班交流展示用比例解决问题的分析解答方法,经历了独立思考,合作交流的探究过程,相信学生不难从例5中发现它的解答步骤。
3、概括总结,初得方法。
根据学生的交流,教师再适时引导明确方法:第一步:读题后,找三定一写关系;第二步:根据关系列比例;第三步:解比例;第四步:检验做答。至此,可以说学生已经基本获取了用比例分析解决问题的方法。然后放手让学生用此方法尝试解答例6。
三、练习深化,构建模型
《标准》强调,教学中千万不要把各种应用题的解法当作现成的结论来交,而是尽可能的给学生提供合适的问题,鼓励学生积极参与解决问题的活动,自己去探索、研究、寻求具体问题中的数量关系,进而列出方程,解决问题。在经历若干次这样的活动之后,使学生感受到方程与实际问题的关系,体会到方程是刻画现实世界的数学模型,领会数学建模的思想和基本过程,提高解决问题的能力和自信心。在探究新知后,我选取了学生比较熟悉的生活实例作为练习深化素材,引导学生经历对比、归纳等学习活动,构建模型。
1、针对练习,巩固方法
选取类似例题的针对练习,让学生巩固理解用比例解决问题的分析解答步骤,巩固分析解答方法。
①住宿生在校5天需要25元生活费,在校20天需要多少生活费?
②每4人一组,学校挑选了15组同学跳校园集体舞;如果改为6人一组,该分多少组?
2、对比归纳,构建模型
在进行一组基本的针对练习之后,让学生观察、比较,说说用比例解决问题题目在结构上有什么特点?分析解答方法有什么规律?引导学生在思考交流中明确比例问题的结构特点是“含有同种量的2个基本应用题,其中一个应用题条件完整,根据题中的2个直接条件可以求出新的问题、可以判断出比例关系,而另一个基本应用题则是类型相同,只告诉一个条件,把另一个条件变成问题”。根据其结构特点,再巩固分析解答方法,让学生充分的观察、对比、发现、归纳等学习活动中,构建模型,提升分析解决问题的能力。
四、拓展延伸,激活思维
培养思维灵活性是数学教学的重要任务之一。心理学家吉尔福特说,教学中教师必须注重对学生进行“发散思维”的训练,因为这是迎接信息时代、适应未来生活所应具备的能力。《课程标准》也强调指出,数学教育不仅要培养学生的应用意识,而且要使学生学会灵活的运用所学知识解决实际问题。为了有效激活学生思维,本节课,我注重了练习的坡度性,选取了有思维挑战性的实际问题以激活学生思维。
1、选择练习,让学生在对比辨析中灵活思维。
多媒体教室,如果用边长4分米的方砖铺地需要180块。如果用边长3分米的方砖铺地,需要多少块?
A、180:4=x:3 B、4×180=3x C、4×4180=3×3×x
此情境问题,需要学生切合实际思考“边长和块数”是不是相关联的量?它们成比例关系吗?有的学生可能会直接用“边长乘以块数”来列比例式,教师可抓住这一生成资源,引导学生在辨析中明白“在总面积一定的情况下,一块砖的面积与块数成反比例这一关系”。通过选择、辨析灵活学生思维。
2、坡度练习,让学生在多步思考中灵活思维
一条水渠,计划每天修300米,40天完成任务。实际上2天修了800米,照这样计算,可以提前几天完成任务?
条件和问题的变化,均增加了思维的难度。在这个问题情境中,让学生“跳一跳摘桃”能够有效激活学生思维。
总之,本节课我关注学生学习情感的发展,抓住学习学习的“最近发展区”,以自主合作探究的学习方式,引导促进学生在已有知识经验的基础上充分经历知识形成过程,在独立思考、合作交流的学习活动中构建模型,形成方法,提升能力。同时,也有以下思考:
用比例解答是解决问题的又一种方法,以前学习的归一、归总应用题,实际就是“先乘后除或先除后乘”的两步计算的乘除法应用题的分析解答方法,在教学这部分内容时,是否有必要引导学生理清这两种方法间的联系与异同?如果需要深入挖掘其联系,该选用什么样的有效策略来达成这个目标呢?这些问题的思考将促进我在以后的教学中不断的学习,不断的反思,不断的改进,力求提高自己的教学水平。
《比例的应用》说课稿3
我所讲课的内容是第十一册数学第58、59页,这节课中,要使学生在理解线段比例尺含义的基础上能用给定的比例尺求相应的实际距离或图上距离,在解决问题的过程中进一步体会比例尺以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,培养学生对知识的`灵活运用能力,丰富解决问题的策略。在这一课中,学生特别要掌握用方程的方法解决这类问题,尤其需要强调的是设未知数时单位名称的正确使用。
为了能使学生把学习数学与日常生活相联系,入情入境的参与学习活动,我在上课开始用脑筋急转弯的游戏把学生吸引到地图上,自然引出图上距离、比例尺,并使学生积极主动去算实际距离,然后应用“旅游”这个话题反复练习,主要是让学生掌握用列方程的方法求实际距离或图上距离,并反复强调设未知数时单位名称的正确使用,以上这些是我在这节课中努力要做到的文章
《比例的应用》说课稿4
各位老师:
大家好,今天我说课的课题是《正反比例的应用》,下面我将从教材分析、学情分析、教法与学法、教学过程、板书设计几个方面进行我今天的说课。
一、 教材分析
《正反比例的应用》本课选自青岛版数学六年级下册第三单元第四信息窗,本节课是在学生学习了比以及正反比例的意义的基础上进行教学的,也是今后学习数学和其他学科知识的重要基础。通过对教材的分析和学生的研究我确定了本节课的教学目标及教学重难点。
教学目标:
1. 能正确判断问题中数量之间的比例关系。
2. 会用比例知识解决简单的实际问题。
3. 培养分析、判断和推理能力,感受数学的价值。
重点:会用比例知识解决问题。
难点:正确判断数量间的比例关系并列出比例式。
二、 学情分析
学生在以前的学习中,已经接触过很多数量关系和比的知识,基础掌握还可以,而且具备一定的自主探索能力,但是语言表达不够规范。
三、 教法
采取"引导-合作-自主—探究"的教学方法,使每个学生都能参与到学习中,感受到学习的乐趣,从而突破本课的难点。
激励评价法:"评价的目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。"我在学生提问题和解决问题中发现有独特见解的,都给予激励的评价,增强学生学习数学的自信心。
四、 学法
[ 新课程不但倡导教师教学方式的转变,而且着力于学生学习方式的转变。培养学生的学习能力首先要让学生掌握学习数学的方法。在这节课中,学生的学习方法主要有:
合作交流法:在获得新知的过程中,学生充分利用各自的资源,开展小组合作,在小组中分工明确,提高了学习效率,使学生的智力得到最佳的`开发,树立的主人翁的意识。
反思法:方法注重反思,学生才能学得牢。在课将结束,学生对自己的获得的知识和学习方法进行反思,总结经验,取长补短。
四、 教学过程
1.复习导入
下面每题中的两种量成什么比例关系?
(1)速度一定,路程和时间。
(2)总价一定,每件物品的价格和所买的数量。
(3)小朋友的年龄与身高。
(4)正方体每一个面的面积和正方体的表面积。
(5)被减数一定,减数和差。
谈话引入:我们今天运用正反比例的知识来解决实际问题。
意图:简单的复习为本节课学习做了铺垫,提高了教学效率。
2.出示学习目标,能用解比例的方法正确解答比较简单的应用题。
意图:带着目标去学习,让学生把握学习方向,而且可以让学生做好自我检测,课后有目的的复习巩固。
3.出示信息窗的情景,你能提出什么问题?
意图:培养学生提取信息能力以及提出问题能力。
4.让学生先独立解答,然后小组交流解题方法,找同学到前面板演解题过程。在这个过程中,教师做好引导,问题中出现的数量存在什么样的关系,指导用解比例的方法解决这个问题。
意图:通过这个过程可以强化学生对正比例意义的理解,培养学生分析解决问题的能力。
5.在经过思考掌握方法之后,直接引导学生用解比例的方法解决第二个红点问题,找代表汇报解题方法与过程。
意图:培养分析、判断能力、解决问题能力以及语言表达能力。
6.总结方法。让学生自己总结用比例相关知识解决应用题的方法。
意图:培养学生分析概括能力。
7.达标检测。
意图:学生从课堂中所学的知识,如果不及时巩固、复习,与实践没有结合起来,就会稍纵即逝,因此设计合理的有效地练习是必须的。
8.课堂小结。
通过这堂课的学习,你有什么收获?你有什么易错点?
意图:这个环节给了学生充分参与课堂的机会,可以培养学习总结概括能力,也会让学生自我评价学习效果。也利于学生掌握学生学习情况。
五、 板书设计
《比例的应用》说课稿5
各位老师:
大家好!我今天说课的内容是《比例尺的应用》。我的说课将从说教材、说学情、说教学流程三个方面展开。
一、说教材
1、教学内容
《比例尺的应用》是人教版数学六年级下册第三单元的内容。第一课时。
2、教材地位和作用
这节课是在学生学完“比例尺的意义”后安排的内容。这部分内容是学生学习有关地图、工程图纸的计算的基础。比例尺在生活中也有广泛应用,学好它也具有很好的现实意义。
3、教材编写思路、结构特点
教材安排了两个例题,例2出示了北京地铁的线路图,让求实际距离。教材中只呈现了列方程式的一种方法,教学时应放手让学生自主选择合适解法。例3是综合运用比例尺知识解决实际问题的内容。主要是让学生采取小组合作的方式,自己制定合适的比例尺求出图上距离。由于这部分内容在上学期已经学过,所以教学时没有按照教材中的结构进行,而是做了适当调整。
4、教学目标
知识技能:根据给定的比例尺,灵活运用知识解决求实际距离的简单问题
数学思考:根据比例尺的知识,在解决求实际距离的问题时有自己的'见解和方法
问题解决:结合具体情境,能按给定的比例尺解决简单实际问题
情感态度:感受比例尺在日常生活中的应用,获得自主解决问题的积极体验
5、教学重难点
教学重点:应用比例尺的知识,培养学生解决生活中实际问题的能力。
教学难点:求实际距离
二、说学情
学生对于这部分知识并不陌生,但由于隔的时间较长,大部分学生已经对这部分知识淡忘了,因此本课主要是让学生在对原有知识进行回顾梳理的基础上并综合运用比例尺知识解决实际问题。学生的知识困难在于能从多角度思考问题,解决问题,提高综合运用所学知识的能力。
三、说教学流程
课程标准中指出,数学来源于生活,学生活中的数学,因此我对教材进行了重新编排,紧紧围绕学生的生活展开。为此我安排了如下环节“
1、复习准备
出示中国地图,让学生观察图中的比例尺。并通过三个问题“什么是比例尺?怎样求比例尺?求比例尺时需要注意哪些问题?”唤醒学生的记忆,再通过问“生活中哪些地方会用到比例尺?”让学生明白比例尺的应用价值,从而引出本节课要学习的内容。
[设计意图:通过回顾单元知识,师生一起梳理建构单元知识树,对此部分的知识点有个系统的理解]
2、联系生活学新知
此环节安排了两个活动,一个是求图上距离,另一个是求实际距离的问题。
(1)求图上距离的问题,以画学校操场平面图的情况为背景。让学生自主制定比例尺后先独立完成,然后组内交流,最后分组进行展示
学具的准备:大小不同的纸张
[设计意图:设计此题的目的有两个,一个是使学生明确要求图上距离,就必须知道比例尺和实际距离,掌握求图上距离的方法。第二个是要让学生明白要根据纸张的大小,确定合适的比例尺。同时也可渗透数值比例尺和线段比例尺的转化方法]
(2)求实际距离
大屏幕出示:陡子峪到六道河镇的线路图。要求出此路段的实际距离,需要知道什么?然后依次出示图上距离和比例尺,然后让学生动手计算。师巡视让有不同做法的学生到黑板上展示。
[设计意图:让学生用学到的知识去解决实际问题,也让学生明确数学与生活的联系.同时鼓励算法的多样化]
3、达标测评
主要有判断和课后的“做一做”
【设计意图:通过这些题巩固学生对比例尺的应用知识加深,提高学生解决实际问题的能力,从而对知识得到了升华。]
4、课堂小结
让学生谈谈收获和感想。然后教师总结,结束此课。
[设计意图:师生谈话式总结本节课,真实的反馈了学生掌握比例尺这部分知识的情况,懂得了学习比例尺的重大作用,达到了学习的境界;同时学生如果有想问的问题,这时候也可以提出来,体现了一种平等、和谐、融洽的师生关系。]
《比例的应用》说课稿6
教材分析
小学数学十二册比例的应用,本节课是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的主要包括正、反比例的应用题,这是比和比例知识的综合运用,教材通过两个例题,讲解正、反比例应用题的解法通过讲解使学生掌握正、反比例应用题的特点以及解题的步骤。
用正、反比例解应用题,首先要根据题意分析数量关系,能从题中找出两种相关联的量,这两种量中相对应的'两个数的比值(或积)是一定,从而判断这两种量中是否成正(或者反)比例,然后设未知数X,比例解答,判断过程也是正反比例意义实际应用的过程。
数学目标
一、知识目标
1、使学生能正确判断应用题中涉及的量成什么比例关系
2、使学生能利用正、反比例的意义正确解答应用题
二、能力目标
1、培养学生的判断推理能力
2、培养学生的分析能力
三、情感目标
引导学生利用已有的知识,自己探索,解决实际问题,培养学生的勇于探索的精神。
教学生点、难点
正确判断题中数量成何比例,根据相等关系等式
教学方法
引导探究,合作学习
教学手段
多媒体辅助教学
教学流程
复习导入
本节课的教学内容是正、反比例的应用,因此通过本小节的教学,使学生加深对正、反比例的意义的理解,能正确判断成正、反比的量。
二、探究新知
学习例题正、反比例的应用题学生在已学过的四则应用题中,实际已经接触只是用归一,归总的方法来解答,因此有教学中先让学生用已学过的方法解:
答:再引导运用新知做这样用移类
比的转化思想进行教学,使新知识不新,旧知识不旧,激发学生学习兴趣。
首先让学生用以前方法解答,然后问:这道题里有哪两种量成什么比例关系?为什么?引导生判断两种量的比例关系,再根据比例的意义列出等式解答,这样加深对比例的理解,又揭示了与旧知识的联系。
三、新课小结
通过例题的讲解,学生总结用比例解答应用题关键?
四、练习提高
1、基础练习
2、判断说理不解答
由学生打手势表示,增添了教学的趣味性,又增大了学生的参与面把握学生学习的效果。
3、变成练习
五、全课小结
六、布置作业
请同学们课后讨论我们学过的归一、归总应用题分别是哪种比例的应用题。
七、效果预测
本节课学会找两种相关联的量,并学会判断这两种是否成正反比例关系,在解决实际问题的过程中,学生能积极主动参与,发挥了学生的主体地位。
《比例的应用》说课稿7
教学内容:教科书第6~8页的例4~例6,练习二的第1题。
教学目的:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。
教学重点:理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。
教学难点:设未知数时长度单位的使用。
教具准备:教师准备一些比例尺不同的地图或本校、本地的平面图。
教学过程:
一、复习
1.复习提问:长度单位:千米、米、分米、厘米、毫米之间的进率及化聚方法。
1米=( )分米=( )厘米=( )毫米
1千米=( )米=( )厘米
2.什么叫做比?
3.化简下面各比。 12 :8 10厘米:100厘米
2米:140厘米 3米:15千米 16厘米:90千米
二、新课
教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。Xkb1.com
1.教学比例尺的意义。
(1)教学例4.
设计一座厂房,在平面图上用10厘米的距离表示地上10米的距离。求图上距离和实际距离的比。
让学生读题。指名回答:
"这道题告诉我们什么?"(在平面图上用10厘米的距离表示地面上10米的距离。)
"要我们做什么?"(求图上距离和实际距离的比。)板书:图上距离 :实际距离
"图上距离知道吗?实际距离也知道吗?各是多少?"继续板书如下:
图上距离 :实际距离
10厘米 : 10米
"10厘米和10米的单位相同吗?能直接化简吗?"
教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。
"是把厘米化作米,还是把米化作厘米?为什么?"(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。)
"10米等于多少厘米?"学生回答后,教师把10米改写成1000厘米。
"现在单位统一了,是多少比多少,怎样化简?"教师边说边擦掉10和1000后面的单位"厘米",并加上" :",板书成如下形式:
图上距离 :实际距离
10 : 1000
请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教师写出这道题的'"答:…".
然后说明:因为在绘制地图和其他平面图时,经常要用到"图上距离和实际距离的比",我们就给它起一个名字叫做"比例尺".(板书:图上距离 :实际距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。(板书:或
图上距离=比例尺
实际距离
图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项是1的最简单整数比。
教师出示比例尺不同的地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。
最后教师指出:
①比例尺与一般的尺不同,这是一个比,不应带计量单位。
②求比例尺时,前、后项的长度单位一定要化成同级单位。如 1O厘米:1O米,要把后项的米化成厘米后再算出比例尺。
③为了计算简便,通常把比例尺的前项化简成"1",如果写成分数形式,分子也应化简成"1".比如,例4中的比例尺通常写成:1:100=
(2)巩固练习。
让学生完成第6页的"做一做".教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是" l".
2.教学根据比例尺求图上距离或实际距离。
教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。
(1)教学例5.
在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。南京到北京的实际距离大约是多少千米? 新 课标 第一 网
指名读题,并说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了南京到北京的图上距离,求南京到北京的实际距离。)
教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。
"这道题的图上距离是多少?"板书:15
"实际距离不知道,怎么办?"(用x表示。)在15的下面板书出x,并在它们中间画上分数线。
"因为图上距离和实际距离的单位要相同,所设的x应用什么单位?"(应用厘米。)板书:解:设南京到北京的实际距离为x厘米。
"比例尺是多少?写成什么形式?"(写成分数形式。)最后板书成下面的形式:
15= 1x 6000000 之后,再回忆一下解答过程。
然后让学生求x的值,并说出求解过程,教师板书出来。
"这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示、"板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。
三、练习
1、比例尺=( ) 实际距离=( ) 图上距离=( )
2.2.5米=( )厘米 0.00006千米=( )厘米 0.032米=( )厘米 350000厘米=( )千米 3.5千米=( )厘米
1、独立完成练习二第1题,并订正。
2、完成练习二的第2题、3题。
第3题,让学生先想想比例尺子 表示的意思。1厘米的图上距离相当于100厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时,要让学生说说计算出的实际的宽和高的单位是什么。
《比例的应用》说课稿8
一.说教材
《反比例函数的应用》是苏科版八年级下册第九章第三节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。这一节的内容符合新课程理念,课程要面向生活世界和社会实践。反比例函数的知识在生产和实际生活中经常用到,掌握这些知识对学生参加实践活动,解决日常生活中的实际问题具有实用意义。通过反比例函数的应用使学生明确函数、方程、不等式是解决实际问题的三种重要的数学模型,它们之间有着密切联系,并在一定的条件下可以互相转化。在教学过程中,还渗透着建模思想、函数思想、数形结合思想,这些思想也为后面学习二次函数的应用奠定了基础。
二.说目标
“反比例函数的应用”是反比例函数及其图象中的一个重要的内容,它是前面几节课的综合应用。由于函数知识在日常生活中有重要的实用意义,根据教学大纲的明确规定并结合素质教育要求,通过本节课的教学达到以下目标:
1、知识目标
使学生了解反比例函数是日常生活和生产实际中应用十分广泛的数学模型,使学生掌握生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。
2、能力目标
①使学生能模仿“利用函数解决实际问题的基本步骤”来解决简单的实际问题;初步养成自己提出或构建数学模型的能力;提高综合运用函数、方程、不等式知识解决实际问题的能力。
②引例通过开放性的问题,作业中通过编题培养学生的发散思维能力。
3、情感目标
①通过本节知识的学习,使学生明确,应用反比例函数的知识可以解决生活中的许多问题,从而进一步培养学生热爱数学,进而努力学好数学的情感。
②使学生树立事物是普遍联系的辩证唯物观。
③引例中让学生具有一方有难八方支援的献爱心精神。
三.说教学重难点
我认为本节课的教学重点是把一类实际问题归结为反比例函数问题来解决,这是因为:
1.反比例函数是日常生活和生产实践中应用十分广泛的数学模型,它真正体现了数学知识来源于生活又应用于生活的重要意义。
2.“利用反比例函数解决实际问题的'基本步骤”是通过对例题的解题过程进行归纳总结而得到的结论。它遵循了从“具体到抽象再到具体”的认知规律,蕴含了从“特殊到一般再到特殊”的推理方法。对今后学习数学有着重要的指导意义。
我认为本节课的教学难点是从实际问题中抽象出数学问题,建立数学模型,注意在实际问题中函数自变量的取值范围,用数学知识去解决实际问题。
在突破难点时,我注意:
1.使学生熟练掌握反比例函数的图象和性质,教学生学会“数形结合”的研究方法,它直观、形象、好理解。
2.密切联系实际问题,注意观察生活。
四.说教学方法
(一)教法分析
根据课程标准,当学生面对实际问题时,能主动尝试着,从数学的角度运用所学的知识和方法寻求解决问题的策略。对于例1,由于学生初次接触反比例函数的应用,我采用的是教师引导法,降低难度.其余,我都采用的教学方法是问题教学法,让一个个有阶梯的问题充满课堂教学,时时启发学生的思维,这种教学方法符合以下教育规律:
1、遵循由浅入深,由特殊到一般再到特殊,体现掌握知识与发展智力相统一的规律。
2、创设问题情境,教师不断启发引导学生思考,由易到难,化繁为简,体现教师的主导作用与学生主体作用相结合的规律。
(二)学法分析
这种教学方法实际上也教给学生一种学习方法,使得学生学会观察生活,注意生活中的实际问题,学会自己探求知识;培养学生善于观察思考的习惯,鼓励学生将所学知识应用到生活中去。学会寻找、发现,学会归纳总结,逐步掌握主动获取知识的本领。
(三)教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“数形结合”的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
五.说教学过程的设计
(一)创设情景,提出问题
“问题是数学的心脏”(P.R.Halmos语),是数学知识、能力发展的生长点和思维的动力。在课堂教学的开始,我创设了这样一个情景:
去年下半年,励才中学初一(2)班黄晶晶同学的爸爸诊断为肝癌,家中又突发一场大火,真是祸不单行,一下急需的10万元款从何而来,关键时刻,群众积极响应镇政府的号召,一方有难八方支援,结果,捐款总额比预期的还要理想。如果你是镇政府领导,你除了积极做好思想动员工作之外,能不能运用反比例函数的知识对即将发动群众献爱心进行策划呢?
为了很好的解决这一问题,我们共同来学习以下两道题目:
设计意图:由学生身边的事出发,激起学生的爱心,为积极筹划这个活动,带着对数学的求知欲,进入例题的学习。
(二)范例设计
学习例1:
小明家离学校1500m,某天小明上学时,发现时间不多了,就加快了行车速度,①小明行车平均速度(υ)与所用时间(t)有怎样的函数关系?②如果所剩时间为15分钟,那么小明的平均速度至少达到多少才能按时到校?③为了安全起见,小明的平均速度最快达到90m/min,他至少要留多长时间,才能安全到校?④画出函数的图象。
例1中,出现了一个常量,两个变量;我们看,
平均速度(υ)随所用时间(t)的变化而怎样变化?是否为反比例函数关系?若是可用反比例函数的有关知识去解决问题.
②、③两问实际上就是函数的特殊情形,一是已知自变量,求函数值;一是已知函数值,求自变量.从这两问,再引导学生探求自变量的取值范围. ④问中,指导学生画图,分析问题(多媒体展示函数图象).
设计意图:这道题是课本例1的改编,更换背景的目的是为了更贴近学生的生活,以更好地激发学生的求知欲.后面的例2也是在课本例2的基础上添加了一个背景,目的也是如此.
由于学生初次接触反比例函数的应用问题,我选择教师引导法.引导学生联系反比例函数图象及性质建立反比例函数模型,渗透函数思想,数形结合思想.在画图象前,已引导学生探究自变量的取值范围,这样就化解了教学难点.
小华同学的爸爸在某自来水公司上班,现该公司计划新建一个容积为4×104m3的长方体蓄水池,小华爸爸把这一问题带回来与小华一起探讨:
①蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?
②如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?
③由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长和宽最多只能分别设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?
这是个几何体积问题的应用题,我通过设置以下问题,引导学生观察思考,逐步分析,最后通过建立函数这种数学模型解决问题.
问题(1):这是一个几何体积问题,问题中包含有哪些量?哪些是常量?哪些是变量?
问题(2):在容积不变的情形下,蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?为什么?写出关系式.
问题(3):函数关系式中自变量的取值范围如何确定?从而决定函数值的取值范围又是怎样?
问题(4):能否画出函数的图象? (指导学生画图,分析问题,多媒体展示函数图象.)
问题(5):题中②、③两问能否利用图象来解?如何解?
问题(6):题中②、③两问除了利用图象来解之外,是不是也可以利用方程解或不等式解?
设计意图:对例2采用了设计问题系列,启发学生思考,联系旧知识建立函数模型,解决了自变量的取值范围从而确定了函数值的取值范围,渗透了函数的思想,让学生初步了解函数模型的建立方法。最后渗透一题多解方法,培养学生思维的灵活性,渗透“函数——方程——不等式”思想和“数形结合”的研究方法,引导学生学会解题后的再思考,将知识系统化。
(三)反馈练习
“学数学而不练,犹如入宝山而空返”(华罗庚语),为了让学生更好地学会反比例函数知识的应用,我设计了例2的后续问题,让学生练习。使课堂教学能前后连贯。
例2中的新建蓄水池工程需要运送的土石方总量为4×104m3,某运输公司承担了该项工程运送土石方的任务。
①运输公司平均每天的工程量υ(m3/天)与完成运送任务所需要的时间t(天)之间有怎样的函数关系?
②运输公司共派出20辆卡车,每辆卡车每天运土石方100 m3,则需要多少天才能完成该任务?
可以通过此类题反馈本节所学,检查学生是否掌握了“数形结合”的研究方法,及时加强对数据和信息的处理能力。
(四)回到引例,前后呼应
①现在大家能否利用我们刚掌握的知识来策划发动群众献爱心呢?
②如果每人平均捐款100元,那么需要发动多少人捐献。根据实际生活水平,每人平均捐款只能达到50元,那么至少要发动多少人捐献?发动人数与每人平均捐款数成怎样的函数关系?当每人平均捐款数一定时,捐款总额与发动的人数成怎样的函数关系?
设计意图:让学生回到课堂之初的问题中,解决问题,使整个课堂教学浑然一体,体验学习数学的乐趣。
(五)收获
教师启发学生思考回答下列问题,再由教师补充归纳本节所学知识内容。
(1)通过本节反比例函数的应用的学习,我们掌握了生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。
(2)初步学会了数学建模的方法.
(3)树立了事物是普遍联系的辩证唯物观。
(六)作业布置
根据新课程理念,人人学有价值的数学,不同的人在数学上有不同的发展.我的作业布置分必做题和选做题两部分,其中选做题是一道自编题,我的目的是既巩固所学知识,又复习了旧知,同时还能让学生体验一下做老师的愉悦.
(4)必做题:①看课本例1、例2.
②做课本习题9.3
(5)选做题:
4月6日,姜堰溱湖湿地公园游人如织,来自世界各地的游人蜂拥而至,“小数学”利用早上上学前的时间,来到公园门口,他发现……。请你利用我们学过的知识,编两题,要求分别能利用正比例函数和反比例函数解决问题。
收获
结束语:
教学过程是一个不断生成的过程,在教学过程中,我将根据学生实际情况,不断调整我的教学内容,以使学生在课堂上的思维永远处于一种亢奋状态。
说课对我来说是新事物,今后我将进一步说好课,并希望各位专家领导对本节课提出宝贵意见。
谢谢各位!
《比例的应用》说课稿9
教材分析
小学数学六年级上册比例的应用,本节课是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的。主要包括正、反比例的应用题,这是比和比例知识的综合运用,教材通过两个例题,讲解正、反比例应用题的解法通过讲解,使学生掌握正、反比例应用题的特点以及解题的`步骤。
用正、反比例解应用题,首先要根据题意分析数量关系,能从题中找出两种相关联的量,这两种量中相对应的两个数的比值(或积)是一定的,从而判断这两种量是否成正(或者反)比例,然后设未知数X,比例解答,判断过程也是正反比例意义实际应用的过程。
数学目标
一、知识目标
1、使学生能正确判断应用题中涉及的量成什么比例关系
2、使学生能利用正、反比例的意义正确解答应用题
二、能力目标
1、培养学生的判断推理能力
2、培养学生的分析能力
三、情感目标
引导学生利用已有的知识,自己探索,解决实际问题,培养学生的勇于探索的精神。
教学重点、难点
正确判断题中数量成何比例,根据相等关系列出关系式
教学方法
引导探究,合作学习
教学流程
一、复习导入
本节课的教学内容是正、反比例的应用,因此通过本小节的教学,使学生加深对正、反比例的意义的理解,能正确判断成正、反比的量。
二、探究新知
学习例题正、反比例的应用题。学生在已学过的四则应用题中,实际已经接触只是用归一,归总的方法来解答,因此在教学中先让学生用已学过的方法解答:再引导运用新知做这样用移类比的转化思想进行教学,使新知识不新,旧知识不旧,激发学生学习兴趣。
首先让学生用以前方法解答,然后问:这道题里有哪两种量?成什么比例关系?为什么?引导生判断两种量的比例关系,再根据比例的意义列出等式解答,这样加深对比例的理解,又揭示了与旧知识的联系。
三、新课小结通过例题的讲解,学生总结用比例解答应用题关键?
四、练习提高
1、基础练习
2、判断说理不解答
3、变成练习
五、本课小结六、效果预测
本节课学会找两种相关联的量,并学会判断这两种是否成正、反比例关系,在解决实际问题的过程中,学生能积极主动参与,发挥了学生的主体地位。
【《比例的应用》说课稿】相关文章:
《比的应用》说课稿11-02
比的应用说课稿07-03
《比例的基本性质》说课稿11-21
《比和比例整理与复习》说课稿范文04-30
比的应用说课稿15篇11-09
比的应用说课稿(15篇)11-16
分数的简单应用说课稿02-06
《比例的基本性质》说课稿9篇01-05
《比例的意义和基本性质》说课稿03-23
比的应用说课稿汇编15篇03-15