当前位置:贤学网>范文>说课稿> 七年级数学说课稿

七年级数学说课稿

时间:2024-05-15 09:32:20 说课稿 我要投稿

七年级数学说课稿汇编(15篇)

  作为一名为他人授业解惑的教育工作者,很有必要精心设计一份说课稿,是说课取得成功的前提。那么优秀的说课稿是什么样的呢?以下是小编为大家收集的七年级数学说课稿,仅供参考,希望能够帮助到大家。

七年级数学说课稿汇编(15篇)

七年级数学说课稿1

  一、说教材:

  本节课主要是在学生学习了有理数概念的基础上,从表达方位这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

  二、说教学目标:

  知识与技能:使学生理解数轴的三要素,会画数轴;能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示。

  情感价值观:向学生渗透数形结合的数学思想,知道所有有理数可以在数轴上表示,培养学生对数学的学习兴趣。

  过程与方法:分层次教学,讲授、练习相结合。

  三、说教学重、难点:

  重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。

  难点:正确理解有理数与数轴上点的对应关系。

  四、说学情:

  ⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。

  ⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。

  ⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  ⑷心理上,学生对数学课的.兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。

  五、说教学策略:

  由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、”的研讨式学习方法。教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。

七年级数学说课稿2

  一、说教材

  1、教材的地位和作用:

  科学记数法是义务教育课程标准实验教科书(浙教版),七年级上册第二章第二节的内容。在学生学习了有理数的加、减、乘、除、乘方等内容的基础上来学习的,本节课进一步学习大数的表示方法――科学记数法。科学记数法将在后几节近似数和有效数字中得以应用,也为科学记数法表示小数打下基础,本节课在实际生活中有广泛应用,同时也为学习科学中物理化学等知识的有力工具。

  2、说教学目标

  确立的依据:《数学课程标准》强调学生的数学活动,发展学生的数感,能用多种方式来表示数,能在具体的情境中把握数的相对大小关系,因此结合学生现有的对数学的认知情况,思维状况和学生学习过程的.情感体验确立教学目标。

  知识目标:理解科学记数法的意义,并学会用科学记数法表示比10大的数。

  能力目标:积累数学活动经验,发展数感,进一步培养学生自主探究的能力。

  情感目标:感受科学记数法的作用,培养团队精神,激发爱国热情。

  3、说教学重点和难点

  根据《数学课程标准》的要求及现阶段学生的学习实际能力确立重难点。

  重点:进一步感受大数,用科学记数法表示大数。

  难点:用科学记数法表示大数,提高学生归纳总结的能力。

  二、说教法

  为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标”。结合先进手段采用讲解法、演示法、讨论法实施教学。

  三、说学法

  指导在前一阶段,已指导学生进行自主学习,学生的能力有一定的提高,因此这一节将继续指导学生通过动手、动口、动脑等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯。

  四、说教学过程设计

  1、预习检测:

  (1)用科学记数法表示下列各数:

  230000; 15800…0(共31个0)

  (以下是选做题)

  (2)下列用科学记数法表示的数,原来各是什么数?

  4.315 ×103; 1.02 ×106

  (3)计算: (8.1 ×108) ÷ (9 ×105)

  8.56 ×102 – 2。1

  设计意图:

  通过课前预习检测完成的情况,检查学生自主学习的能力,了解学生对本节课的疑惑。

  2、创设情境导入问题:

  中国的国土面积约为960 0000平方千米

  07年第二季度美国摩托罗拉公司盈利—28000000美元

  我国煤的储藏量达6000 0000 0000吨

  天然气资源量约47 0000 0000 0000立方米

  上面各资料有出现较大的数据,这些数记录过程中容易出错,那么有没有其它较为简便的方法来记录以上这些数据呢?

  设计意图:

  创设情境,激发民族自豪感,体会大数”读””写”的困难,从而导出课题。

  3、探究新知

  通过刚才出现的大数引出问题一:以上各数有些什么特点?问题二:有没有简单的记数方式?引导学生回答。

  之后让学生观察回答10n的数的特征

  讲解如何把图中出现的大数转换成一个数(只带一位整数的数)与10的n次幂乘积的形式。进而引入概念科学记数法:一般地,一个大于10的数可以表示成a×10的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法(scientificnotation)。注意:(1)1≤a<10(2)n是正整数(3)对于负数的科学表示法,只需要将其绝对值用科学计数法表示,符号不变。

  设计意图:

  引出如何用科学记数法表示大数,通过表示方法总结出科学记数法的定义,并且能理解和掌握转换过程。真个板块也是本课的重点和难点处理掉,让学生感到自然过渡。这里体现了特殊到一般的认知规律。

  4、运用新知解决问题

  设计一个小游戏用科学计数法表示下列各数

  设计意图:

  玩是孩子的天性,让孩子在玩中去消化知识,采用”活动促发展”的基本思路,面向全体落实概念,营造课堂气氛,使每位同学积极投入,培养学生团结合作能力。

  5、探究归纳

  下列用科学记数法表示的数,原来各是什数?(指一般用十进制表示的数)

  设计意图:

  采用”自主探究”的形式,归纳总结反思,培养学生的概括归纳能力,逆向思维能力。

  6、实战演练:

  1、计算

  2、测脉膊(动手实践题)

  设计意图:

  巩固新知,培养学生计算能力,动手能力,解决问题的能力,让学生感受到数学来源于生活,数学就在我们身边,培养学生学习数学的兴趣,发展学生的数感。

  7、小结:成果发布会

  让学生畅所欲言,说说收获与体会。

  设计意图:

  帮助同学理清知识脉络,强化重点。

  8、布置分层作业

  1、用科学计数法表示下列叙述中较大的数

  2、应用题(选作)

  3、提高题(选作)

  设计意图:

  内化知识,培养全体,注重个性发展。

七年级数学说课稿3

  一、教材分析:

  “数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算。本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算。通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。

  鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:

  1、知识目标:

  经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。

  2、能力目标:

  经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。

  3、情感目标:

  在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。

  为了实现以上教学目标,确定本节课的教学重点是:有理数的`减法法则的理解和运用。教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题。

  二、学情分析:

  我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的。

  在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。

  此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。因此在教学过程中要做好调控。

  三、教法选择及学法指导:

  《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学。其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用。

  上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的。本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程。

  四、过程分析:

  教学环节、教学活动设计、设计说明

  a、创设情境自然引入

  1、首先与学生互动谈论合肥本地今日的气温,了解合肥今天的最高气温和最低气温。提问:合肥今天的温差是多少度?你是怎样计算的?

  补充回答:

  2、自然过渡到乌鲁木齐的温差的计算问题,在学生列出算式4–(–3)后引入课题:有理数的减法

  (板书课题)

  通过温度的比较让学生明白减法的实际意义在于同类量之间的比较,为后来运用减法解决实际问题打下基础。

  从学生身边的实际引入新课,让学生感受到数学就在自己身边,增强学数学的乐趣。同时这也符合七年级学生的认知特征,使学生乐于进一步探索。

  在学生提出可以用4–(–3)计算乌鲁木齐的温差后,教师鼓励学生充分探索计算4–(–3)的方法,得出结果为7。

  在学生得出4–(–3)=7后,教师引导学生比较4–(–3)=7与43=7这两个算式及其结果。

  在学生对有理数的减法计算提出初步的猜想“减去一个数等于加上这个数的相反数”后,教师设问:

  只有4–(–3)=43=7这一个例子,你能不能断定这个猜想成立?

  引导学生通过列举具有不同代表性的特例,如:正数

  减去正数、正数减去零、正数减去负数、负数减去正数、负数减去零、负数减去负数、零减去正数、零减去零、零减去负数等。

  最后请学生根据上面的数学活动经验自主总结归纳有理数的减法法则。(教师板书这一法则)

  学生得出结果的方法可能不一样,教学中只要是合理的都应鼓励。

  如采取逆运算的方法,或利用温度计直接数读数的方法等。

  对4–(–3)=7与43=7的观察、比较,是进一步探索有理数减法法则的基础。可借助多媒体课件演示算式的规律,帮助学生探索其中的内在关系。

  从提出猜想到得出正确得结论之间有一个探索验证的过程,这个过程正是新课程改革所提倡的“做数学”的过程,教学中要提供足够的时间让学生探索、交流。

  学生通过相互补充,不断列举不同代表性的特例,在合作交流中彻底理解有理数相减时总成立的一般法则。而这个“举例”过程,正是一个“数学化”的过程,正是一种对数学素养的培养。

  学生的归纳可能不规范,教师可请学生互相交流、补充使之规范,从而培养学生的抽象概括能力及口头表达能力。

  b、例题讲解即时反馈

  1、师生共同完成p53例1,其中第(1)小题教师讲解,其余各题请学生完成。

  在完成例1后,教学中采用分组竞赛的方法及时处理p54“随堂练习”。

  2、师生共同完成p53例2、p54例3

  教师要通过引导学生分析实际情境,让学生在实际情境中进一步体会减法的意义,并熟练利用减法法则进行减法运算。

  教师讲解第(1)小题时要点明算理,规范解答。

  互动交流式的练习方式让学生的学习更积极主动。学生在活动中能体会参与数学活动的乐趣。

  例2、例3是实际问题,它们的解答有利于培养学生“用数学”的意识。

  c、拓展应用

  师生一起分析p55的习题第5题。在弄清题意后,请学生填写方阵图。

  解决问题的核心是找到“每个数都加上的同一个数”是什么,这就是有理数的减法在这个实际情境下的应用。

  另一方面,本题也提供了一个三阶幻方的一般填法,拓展了知识面,并为“试一试”的思考提供参考。

  d、课堂总结

  多媒体出示总结性问题:

  1、这一节课我们一起学习了哪些知识?

  2、对这些内容你有什么体会,请与你的同伴交流。

  鼓励学生积极发言,增进师生、生生之间的交流、互动。

  e、布置作业

  1、课堂作业:

  p54-55习题2。6第1、2、3、4题

  2、课外思考:

  p55习题2。6试一试

  利用课堂作业及时反馈本课重、难点。

  利用课外思考给部分学生提供进一步发展的机会

七年级数学说课稿4

  一、教材内容与地位:

  《分式的意义》这一节是上海教育出版社九年制义务教育课本数学七年级第一学期第十章“分式”的第一节内容。这节课是在学生学习了整式、因式分解的基础上教学的,学生已经学习和掌握了分式的运算,具备学习本节课知识的基础。同时学好本节课,是以后学习分式的基本性质、运算以及解分式方程的前提。因此,我确定本节课的重点为分式的意义,难点为分式值为零的条件。

  二、学情分析

  我任教班级学生基础比较扎实,学习能力较强.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。为了学生能切实掌握所学知识,在教学中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理.还特别设计了反馈练习。

  三、教学目标:

  通过情境引入,引导学生观察分析,类比分数形成分式的概念,理解分式的.意义。

  通过对具体分式的探究与讨论,理解并掌握分式有意义、无意义、值为零的条件。

  通过类比分数研究分式的教学,学生具有了运用类比转化的思想方法解决问题的能力。

  四、教学方法与教学手段

  教学方法:遵循教师为主导,学生为主体的原则,结合七年级学生的认知特点和已有的认知水平,采用创设学生熟悉的问题情境,层层设疑、讲练结合,综合运用探究式、启发式方法进行教学。

  教学手段:多媒体教学。

  五、教学过程

  通过创设情境(雅典奥运会上姚明投篮场景),引导学生观察类比(与已有的分式知识),联想已有的知识经验,分析新的问题等活动,让学生充分感受知识的产生和发展过程,让学生始终处于积极思维状态之中。

  通过分式概念、分式无意义、有意义、值为零的条件等探究活动,让学生亲历发现事物特征、规律的过程,激发学生的学习兴趣,增强自信心。

  在例题的处理上:一方面,解决问题的具体操作方法,力求规范,另一方面,“分式无意义——分式有意义——分式值为零”的编排顺序,更符合思维的规律,有层次有深度,有“面”有“量”,达到巩固,加深理解的目的;另一方面,在练习设计中采用开放式的活动形式,更有利于培养学生的口头表达能力,解决实际问题的能力以及创新能力。

  课堂的小结力求让学生通过自身的学习与体会进行解决,让学生体会每一个知识的形成过程,感受到探索数学带来的乐趣,同时感受到获得成功的喜悦。根据学生的个性差异,遵循因材施教的原则,设计分层作业,分必做题和选做题,满足不同层次学生需求。

七年级数学说课稿5

  一 说教材

  《一元一次不等式》是人教版必修教材第 章第 课时的教学内容。在此之前,学生们已经学习了一元一次方程这为过渡到本课题的学习起到了铺垫的作用。而本课题的理论、知识是学好以后课题的基础,它在整个教材中起着承上启下的作用。

  二 说教学目标

  根据本教材的结构和教学内容分析,结合七年级学生的认知结构和心理特点,我将制定以下三个教学目标:

  1. 了解一元一次不等式的概念;会解一元一次不等式。

  2. 通过学习对一元一次不等式的概念及解一元一次不等式的探究过程,体会类比数学思想方法。

  3. 培养学生理论联系实际的思维能力及总结概括能。

  三 说教学重、难点

  根据教学大纲和新课程标准的要求我认为本节课的教学重点是让学生掌握一元一次方程的概念,并会类比解一元一次方程的步骤解一元一次不等式。

  本节课有两个教学难点:把不等式中的未知数化为1这一步时,应根据不等式的性质确定不等号的方向是否改变;会灵活运用一元一次不等式的概念及解法的知识解决相关的数学问题。

  四说教法、学法

  数学知识相对比较抽象,学生在学习是觉得很枯燥,接受新知识会比较困难。为了激发学生学习的主动性、积极性我采用了趣事导入法、类比法。

  根据七年级学生注意力不太集中,又好动的心理特点我采用了合作讨论法和自主探究法以提高学生自觉学习的习惯。

  五说教学过程

  在本节课的教学过程中,我能够根据学生的认知结构和心理特点选择合适的教学方法,激发学生学习的主动性、积极性,将新知识化难为易,提高本节课的教学效果。我主要从以下五个环节进行教学的。

  1 回顾旧知,导入新课

  首先通过鲁班造锯的故事引入课题,这个故事也正体现了数学中常用的类比数学思想,既能激发学生学习的兴趣,同时这种类比思想有利于提高学生的创造性。再让学生通过解1道含有分母的一元一次方程,进而回顾一元一次方程的概念和解一元一次方程的步骤达到温故知新的'目的。

  2 探究新知

  在教学新课的过程中根据教材的重、难点;学生已有知识的实际现状选择合适的教法和学法并运用多媒体辅助教学以最大限度的提高教学效率。首先我设计了4道很简单的小问题题( 用不等式表示下列各式)得出4个一元一次不等式让学生观察其共同特点从而很顺利的概括出一元一次不等式的概念;再给出5个不等式让学生判断是否为一元一次不等式从而加深对概念的理解;再启发学生类比解一元一次方程的步骤探究一元一次不等式的解法和步骤,进一步比较知其联系与区别,有利于提高学生的概括总结能力。

  3 巩固练习

  通过学生自主合作解2个一元一次不等式,一个不含分母、不含等号,一个含有分母、含有等号。这样由浅入深的设计让学生更容易注意到在数轴上表示解集时若包括分界点画实心点,若不包括分界点画实心点。

  4小结

  设计一个问题 (议一议):解不等式移项时应注意什么?系数化为1时应注意什么?在数轴上表示解集时应注意什么?是本节课的知识系统化。

  注意:解不等式移项时要变号但不改变不等号的方向;系数化为1时不等式两边同除以或乘负数时不等号的方向要改变;在数轴上表示解集时若包括分界点画实心点,若不包括分界点画空心点。

  5 作业布置

  让学生把教材第126页第1题和第2题写在课堂作业本上以进一步巩固本节课的知识。

  总之,本节课在教学时我采用的是故事导入法、类比数学思想方法。由古代著名的工匠鲁班经过茅草割手的事实类比发明了锯子导入课题,让学生体会类比的数学思想方法的重要性和创新性。从而让他们通过回顾和练习解一元一次方程的过程,借助类比思想探索一元一次不等式的解法,深刻体会温故知新的成就感,进而轻松愉快的获得新知识。

七年级数学说课稿6

  各位专家评委,各位老师,您们好!

  我叫初雨,来自北京市朝阳区的日坛中学.很高兴有机会参加这次教学基本功的展示活动并得到您们的指导.

  今天我说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册第五章的5.3节《平行线的性质》(第一课时).下面我就从教学目标的确定;教学重点、教学难点的分析;教学方式及教学手段的选择;教学过程设计这四个方面把我的理解和认识作一个说明.

  一、教学目标的确定

  平面内两条直线的位置关系是空间与图形所要研究的基本问题,这些内容学生在小学已经有所了解(结合生活情景了解平面上两条直线的平行和相交(包括垂直)关系),本章将在学生已有知识和经验的基础上,继续进行研究.本节课在理解了两直线平行的判定方法的基础上,进一步对平行线的性质展开研究.并在探索性质和与他人合作交流等活动中,发展合情推理,进一步学习有条理的思考与表达.

  根据数学课程标准(实验)的要求和教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:

  1.了解平行线的性质,并能运用它进行简单的运算和证明;

  2.能够运用“两直线平行,同位角相等”这一基本事实证明平行线的性质(两直线平行,内错角相等;两直线平行,同旁内角互补);

  3.通过观察——实验——猜想——证明的过程体验探索性质的方法,激发学生学习兴趣,培养学生严谨的学风.

  二、教学重点、教学难点的分析

  平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到.这部分内容是后续学习的基础,让学生通过探索活动来发现结论,经历知识的“再发现”过程,可增强学生对性质的认识和理解,培养学生多方面的能力.因此我确定本节课的重点为:探究平行线的性质.

  由于学生是第一次接触基本图形的性质和判定方法,且它们互为逆命题,所以学生很容易在记忆和使用时将其混淆.因此,我确定本节课的难点为:明确平行线的性质和判定的区别.

  三、教学方式及教学手段的选择

  根据本节课的教学目标和重点、难点,我确定本节课的'教学方式为启发探究式.从学生熟悉的生活实例出发,通过独立思考、动手操作、小组合作交流等数学活动,逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,挖掘学习潜能;同时在教学过程中对不同层次的学生分别进行指导,让每个学生都能得到一定的发展.

  另外,我注意现代信息技术与学科教学的整合,信息技术工具的使用能为学生的数学学习和发展提供丰富多彩的教育环境和有力的学习工具.利用几何画板制作图形,并让图形动起来,借助测量功能度量角的度数,有助于学生在观察图形运动变化的过程中,发现其中不变的位置关系和数量关系,从而发现图形的性质,变抽象为直观,变复杂为简单,加快了教学节奏,扩大课堂容量,提高课堂教学效益.

  四、教学过程设计

  【教学结构设计】

  本节课的流程分五部分:创设情境激发兴趣;探究新知实验猜想;归纳性质说理证明;应用新知巩固练习;归纳小结布置作业.

  【教学过程设计】

  〈一〉创设情境激发兴趣

  2008年8月8日将在北京举办第29届奥运会,承办多项比赛项目的国家奥林匹克体育中心位于北四环和安苑路之间,这两条路互相平行,现需要修建一条贯穿两条路的新干线,设计新修道路与安苑路夹角为65,那么它与北四环的夹角是多少度?

  通过学生熟悉并关注的奥运道路建设问题作为引入,创设情境设置疑问,激发学生学习兴趣.引导学生从地图中抽象出基本图形,将问题转化为探索两直线平行,同位角之间有怎样的数量关系.

  〈二〉探究新知实验猜想

  本环节设置了学生活动和教师演示两个环节.

  学生活动:

  1.作出两条平行直线a、b被第三条直线c所截,标出所得的8个角,你能借助你所画的图想办法解决如果已知两条直线平行,同位角有怎样的数量关系这个问题吗?如果两直线平行,内错角、同旁内角又各有怎样的数量关系呢?

  学生首先独立完成活动1,鼓励学生运用多种方法进行探索,开放式的问题有利于培养学生的创新思维.在此过程中教师要关注:学生能否按要求正确画图并准确标记直线和角;能否准确找出同位角、内错角和同旁内角,分别进行讨论,并得出正确结论.对于学有困难的学生教师要给予具体的帮助、鼓励和指导,使全班同学都能积极参与探索活动.

  2.在小组内同伴交流:解决问题的方法一样吗?得到的结论相同吗?并把自己的猜想表述出来.

  学生以四人合作小组为单位进行交流讨论.学生可能想到的方法:(1)用量角器进行度量;(2)通过剪纸拼图进行比较.

  通过交流积累了较为充分的事实基础,为有效地进行归纳概括提供了帮

  助.教师深入合作小组,倾听学生的见解,时刻关注学生在这个过程中生成的新问题,并给予适时的指导点拨,鼓励学有困难的学生积极投入到讨论中,注意表扬表现突出的学生.

  3.展示探究过程和结论

  合作小组代表上台借助投影全面展示本小组的探究过程和结果,教师注意选择具有代表性的各种方法,并关注学生叙述结论的语言是否准确.

  鼓励学生在独立思考的基础上与他人合作交流,每个学生的独立思考为合作交流奠定了基础,同伴间的合作交流又能弥补个人的思考有时难以全面和深入的情况,从而帮助学生获得较强的感性认识,充分体现认知过程.探究平行线的性质是本节课的教学重点,让学生充分经历动手操作—独立思考—合作交流—得出猜想的探究过程,突出重点.适当的合作交流也有利于学生逐渐形成良好的身心素质.

  教师演示:

  平行线的性质比较抽象,根据学生的认知特点,加强直观教学,利用几何画板的度量功能分别量出三对同位角、内错角、同旁内角的度数,让学生直观验证探究的结论.然后改变截线的位置,帮助学生在运动变化中进一步明确其中不变的数量关系.

  〈三〉归纳性质说理证明

  1.平行线的性质

  性质1.两直线平行,同位角相等.

  性质2.两直线平行,内错角相等.

  性质3.两直线平行,同旁内角互补.

  在学生合作交流后,教师归纳并板演平行线的性质,规范文字语言.

  2.试一试用符号语言表达上述三个性质.

  学生独立思考回答,教师组织学生互相补充,并出示准确形式.

  如图:

  性质1.∵a∥b,性质2.∵a∥b,性质3.∵a∥b,

  ∴∠1=∠2.∴∠2=∠3.∴∠5+∠6=180o.

  帮助学生理解文字语言、符号语言、图形语言之间的相互转化,为今后进一步学习推理打下基础.

  3.你能根据平行线的性质1说出性质2、3成立的道理吗?

  例如:如图,

  ∵a∥b,

  ∴∠1=∠2.()

  又∵∠3=,(对顶角相等)

  ∴∠2=∠3.

  类似的,对于性质3请写出推理过程.

  学生观察图,独立思考填空.此处将由性质1推导性质2的过程以留白形式出现,循序渐进的引导学生思考,使学生初步养成言之有据的习惯,从而能进行简单的推理.教师关注学生独立书写性质3的推理过程中能否做到知识的合理迁移,书写是否正确.引导学生从“说点儿理”向“说清理”过渡,由模仿到独立操作逐步培养学生的推理能力.

  4.对比平行线的判定方法和性质,你能说出它们的区别吗?

  学生独立思考后回答,教师引导学生明确判定与性质最大的区别在于条件和结论互逆,即从角的相等或互补关系得到两直线平行是平行线的判定;反过来,由直线的平行得到角的相等或互补关系,是平行线的性质.这里是学生升入初中以来第一次接触判定和性质,要让学生明确它们之间的区别,防止在应用时发生混淆.为后面学习其他图形的判定和性质作好铺垫.

  〈四〉应用新知巩固练习

  1.现在你能解决奥运会道路建设的问题了吗?

  2.已知:如图1,MN∥EF,CD分别交MN、EF于A、B,

  找出图1中相等的角,并说明理由.

  3.如图2,填空:

  ①∵ED∥AC(已知)

  ∴∠1=∠C(

  ;)

  ②∵AB∥DF(已知)

  ∴∠3=∠()

  ③∵AC∥ED(已知)

  ∴∠=∠(两直线平行,内错角相等)

  4.如图3,∠1+∠2=180,∠3=108,求∠4的度数.

  首先利用所学知识解决引入问题,充分利用教学资源,并让学生体会数学是解决实际问题的有效手段;第2题回归基本图形让学生充分指出相等的角(包括对顶角),从而体会根据平行线的性质可以达到转化角的效果;第3题从不同角度应用性质,强化重点知识的理解;第4题先判定平行再应用性质进行简单的推理计算,从而在解题过程中辨析判定和性质,要求学生会用平行线的性质进行计算.随堂练习可以帮助学生巩固新知,老师从学生解题过程中了解教学效果,从简单图形到复杂图形、从单一知识到几个知识的综合运用,进一步提高学生的识图能力,逐步提高推理能力和解决问题的能力.

  〈五〉归纳小结布置作业

  课堂小结:

  1.今天我们学习了平行线的性质:

  性质1.两直线平行,同位角相等.

  性质2.两直线平行,内错角相等.

  性质3.两直线平行,同旁内角互补.

  2.平行线的性质和判定的区别与联系

  条件结论

  判定

  性质

  3.我们知道了能够运用平行线的性质得到两个角相等或互补的结论,它是后面学习中进行计算和证明的常用依据,可以用来转化角.

  4.回顾发现平行线的性质所经历的环节,感受发现图形性质的方法.

  师生共同对本节课进行总结,教师引导学生从知识和技能两方面进行归纳.帮助学生梳理知识脉络,回顾平行线的性质,突出教学重点;引导学生说明白性质和判定的联系和区别,课下完成对比表格,下节课进行展示,从而突破难点;最后教师点明平行线的性质的作用及发现图形性质的方法,提升学生的认识.

  分层作业:

  (1)看书P21—P23(补全书上留白,划出重点内容);

  (2)书P25习题5.3第1—6题;

  (3)探究题(选作)

  如图1:已知AB∥DE,那么∠1+∠2+∠3等于多少度?为什么?

  当已知条件不变,而图形变为如图2时,结论改变了吗?图3中的∠1+∠2+∠3+∠4是多少度呢?如果如图4所示,∠1+∠2+∠3+…+∠n的和为多少度?你找到了什么规律吗?

  作为课堂教学的评价延续,可及时了解学生对本节课知识的掌握情况,对教学进度和方法进行适当的调整,对有困难的学生给予适时的指导.看书帮助学生养成复习的好习惯;必作题进一步巩固平行线的三个性质及应用;选作题为学有余力的学生提供更广阔的探索空间,提高解决问题的能力.

  以上是我对本节课教学的一些设想,还有很多不足之处,恳请您们的批评指正,谢谢!

七年级数学说课稿7

  今天我说课的内容是:人教实验版教材《义务教育课程标准实验教科书》七年级(上),第一章有理数第四节有理数的除法第二课时p36页例9。

  一、说教材

  1、教材的地位和作用

  本节课是在学习了有理数加减法及乘除法法则的基础上学习的。本节课对前面所学知识是一个很好的小结,同时也为后面的有理数混合运算做好铺垫,很好地锻炼了学生的运算能力,并在现实生活中有比较广泛的应用。

  2、教育目标

  (1)知识与能力

  ①能按照有理数加减乘除的运算顺序,正确熟练地进行运算。

  ②培养学生的观察能力、分析能力和运算能力。

  (2)过程与方法

  培养学生在解决应用题前认真审题,观察题目已知条件,确定解题思路,列出代数式,并确定运算顺序,计算中按步骤进行,最后要验算的好习惯。

  (3)情感态度价值观

  通过本例的学习,学生认识到如何利用有理数的四则运算解决实际问题,并认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识普适性美。

  3、教学重点和难点

  重点和难点是如何利用有理数列式解决实际问题及正确而

  合理地进行计算。

  二、说教法

  鉴于七年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。尝试指导法,以学生为主体,以训练为主线。为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标。

  三、说学法指导

  本例将指导学生通过观察、讨论、动手等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的`良好学习习惯。

  四、师生互动活动设计

  教师用投影仪出示例题,学生用抢答等多种形式完成最终的解题。

  五、说教学程序

  (课本36页)例9:某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年盈亏情况如何?

  师生共析:认真审题,观察、分析本题的问题共同回答以下问题:

  1、年哪几个月是亏损的?哪几个月是的盈利的?

  2、各月亏损与盈利情况又如何?

  3、如果盈利记为“”,亏损记为“-”,那么全年亏损多少?盈利多少?

  4、你能将亏损情况与盈利情况用算式列出来吗?

  5、通过算式你能说出这个公司去年盈亏情况如何吗?

  【师生行为】:由教师指导学生列出算式并指出运算顺序(有理数加减乘除混合运算,如无括号,则按“先乘除后加减”的顺序进行)再由学生自主完成运算。

  【教法说明】:此题一方面可以复习加()法运算,另一方面为以后学习有理数混合运算做准备,特别注意运算顺序。同时训练了学生的观察,分析题目的能力。为以后解决实际问题做准备。

  (三)归纳小结

  今天我们通过例9的学习懂得了遇到实际问题应把实际问题通过“观察—分析—动手”的过程用数学的形式表现出来,直观准确的解决问题。

  六、说板书设计

  板书要少而精,直观性要强。能使学生清楚的看到本节课的重点,模仿示范例题熟练而准确的完成练习。也能体现出学生做题时出现的问题,便于及时纠正。

七年级数学说课稿8

  第一课时说课说案

  一:教材分析:(说教材)

  1:教材所处的地位和作用:

  本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣

  以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

  2:教育教学目标:

  (1)知识目标:

  (a)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。

  (b)

通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的.应用题。

  (2)能力目标:

  通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。

  (3)思想目标:

  通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

  3:重点,难点以及确定的依据:

  根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。

  二:学情分析:(说学法)

  1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。

  2:学生在列方程解应用题时,可能存在三个方面的困难:

  (1)抓不准相等关系;

  (2)找出相等关系后不会列方程;

  (3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。

  3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

  4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。

  5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。

  三:教学策略:(说教法)

  如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

  1:“读(看)——议——讲”结合法

  2:图表分析法

  3:教学过程中坚持启发式教学的原则教学的理论依据是:

  1:必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让

  学生大致了解列出一元一次方程解应用题的方法。

  2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例

  1中,不能把“设原来有x千克面粉”写成“设原来有x”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“x”“—15%x”“42500

  ”的单位都是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。

七年级数学说课稿9

尊敬的领导、老师们:你们好!

  今天我说课的课题是人教实验版数学七年级下册第五章第4节《平移》第一课时.下面,我将从背景分析、教学目标设计与、教学重点与难点、教学方式与手段、教学过程设计等几个方面对本节课的教学设计进行说明.

  一、背景分析

  1.1教材的地位作用及整合

  从《课程标准》看,图形的变换是“空间与图形”领域中一块重要的内容,平移是一种基本的图形变换,也是本套教材中引进的第一个图形变换.图形变换可以使图形动起来,有助于发现图形的几何性质.因此图形的变换是研究几何问题的有效工具.教科书将“平移”安排在本章最后一节,一方面是考虑将其作为平行线的一个应用,另一方面考虑引入平移变换,可以尽早渗透图形变换的思想,使学生尽早接触利用平移分析和解决问题的方法.也为后面学习“用坐标表示平移”奠定基础.

  《课程标准》对平移变换的要求是通过具体实例认识平移,探索它的基本性质,理解对应点连线平行且相等的性质;能按要求作出简单平面图形平移后的图形;利用平移进行图案设计,认识和欣赏平移在现实生活中的应用.在建立平移概念及探索平移性质的过程中,初步建立空间观念,发展几何直觉,让学生在运动变化中寻找图形的不变的位置关系和数量关系,培养审美能力;能结合情境发现并提出问题,体会在解决问题中与他人合作的重要性,获得解决问题的经验.

  教材这一部分内容建议安排2课时,第一课时学习平移的概念及基本性质,第二课时主要解决平移作图问题.由于第一学段(1~3年级)课标要求:结合实例,感知平移现象;能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形.第二学段(4~6年级)要求:通过观察实例,认识图形的平移,能在方格纸上将简单图形平移;欣赏生活中的图案,灵活运用平移在方格纸上设计图案.所以我将两节课的内容整合成为一节课.这样既可以避免无谓的重复也不会让学生感到压力很大.

  1.2学生情况分析

  本课要理解掌握平移的概念、性质及利用平移作图,学生必须具有图形平移的生活常识和线段相等及平行线的判定等知识储备,同时,还须具有一定的观察、归纳、探索能力.目前,我所任教班级的学生数学基础较好,以上所须基本都已具备,但学生的抽象概括、探索能力稍微偏弱一些,而且虽然学生对动手操作活动较为感兴趣,探索精神和学习毅力却又不足.

  二、教学目标设计

  1、知识技能:

  ①了解平移的特征,能发现特殊图案的共同特点,并能根据这个特点绘制图形;

  ②能发现、归纳图形平移的基本性质并根据基本性质作平移后的图形.

  2、数学思考:学生经历操作、探究、归纳、总结图形平移基本特征的过程,发展学生的抽象概括能力;学生动手画图,增强学生画图的能力.

  3、解决问题:体会从数学的角度理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识.

  4、情感态度:学生经历操作、实验、发现、确认等数学活动,感受数学活动充满了探索性与创造性,促进学生乐于探究.

  三、教学重点与难点

  根据学生小学已有的知识、学生的思维特点以及课标要求和教材内容,我认为教学重点是探索图形平移的基本性质,教学难点在于利用平移的基本性质作出平移后的图形.

  四、教学方式与手段

  根据本节课的内容特点及学生的实际水平,我采用启发式教学,学生通过探究、观察、归纳等活动获得新知,并亲手画图实践进行应用.在教学手段上充分利用电脑多媒体优化课堂教学.

  五、教学过程设计

  我通过创设实际问题情境,引导学生从实例中抽象概括出平移的概念,再让学生从活动中自主探索得到平移的性质,并应用其画出平移后的图形和解决实际生活中的问题.

  5.1创设情境,激发学生学习兴趣

  我是由[活动1]仔细观察下列美丽的图案,回答问题:

  (1)这些图案有什么共同特点?

  (2)下面这些图案能否根据其中一部分绘制整个图案?若能,你能否想象出是怎么绘制的?

  这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫.

  5.2引导活动,揭示知识产生过程

  当学生回忆起已有的与平移相关的内容后,再拿一个具体的例子来研究:

  [活动2]

  (1)如何在word文档中画出一排形状和大小如右图所示的小雪人的图案?

  (2)大家观察我画出的两个雪人.

  问题:

  ①雪人的形状、大小、位置在运动前后是否发生了变化?

  ②雪人的鼻尖B是怎样运动的?它运动到了什么位置?帽顶呢?指出:如A与A’,B与B’,C与C’称为对应点.

  ③连接几组对应点,观察得到的线段,它们的位置、长短有什么关系?

  ④再连接一些其他对应点的.线段,它们是否仍有前面的关系?

  通过学生的观察,和教师提供的问题串,让学生一步一步思考归纳总结出平移的概念和性质.再由“思考”让学生总结评议的两个要素,同时和学生小学学的只会水平和竖直方向的平移作比较,进行衔接和扩展.

  定义:一个图形沿着某个方向移动一定的距离,图形的这种移动,叫做平移变换,简称平移.

  特征:

  (1)平移不改变图形的形状和大小;

  (2)对应点连线平行且相等.

  思考:图形平移的要素是什么?方向和距离

  5.3动手操作,应用性质作出平移图形

  让学生根据平移的性质平移图形,同时通过问题串的形式帮助学生理解平移图形其实就是平移关键点并归纳整理出作图步骤.

  [活动3]:如图,平移三角形ABC,使点A移动到点A,.

  (1)画出平移后的三角形A,B,C,;

  (2)找出其中平行且相等的线段.

  思考:

  (1)三角形中哪几个点是最关键的点?

  (2)已知一个顶点的对应点,你由此就能确定什么?(你能否由些确定图形平移的方向和移动的距离?)

  (4)确定了图形的移动方向和移动的距离,如何作出其他3个顶点各自的对应点呢?

  (5)找出各顶点的对应点后如何得出原图形经平移后图形呢?

  归纳:画出平移图形的步骤:

  关键在于按要求作出对应点。

  然后,顺次连结对应点即可。

  通过这个问题也让学生认识到:一个图形的平移实际上就是这个图形上的端点的移动,即是“点对点的移动”.

  5.4开动脑筋,综合应用巩固所学

  [活动]4看一看,辨一辨

  1.下面哪些燕子可以通过平移与黑色燕子重合?

  2.选择

  经过平移,图形上每个点都沿同一个方向移动了一段距离,下面说法正确的是()

  A不同的点移动的距离不同B既可能相同也可能不同

  C不同的点移动的距离相同D无法确定

  3.能由△AOB平移而得的图形是哪个?

  4.如图,△ABC是由△CEF平移而得,图中有哪些相等的线段?有哪些相等的角?

  这四道练习题:

  1实际生活中的图形让学生更直观地强化了对平移的感知;

  2概念的引申:在对比中使学生进一步感受到平移的特征.

  3识别图形的平移:在复杂图形中识别平移

  4应用平移的性质寻找具有某种位置关系和数量关系的线段以及相等的角,将图形的平移最终应用到“在变化中寻找不变量”中,这里的“不变量”不仅包括线段也包括角.其实这一点和平行线是不谋而合的,学习平行线最终目的是实现“角”的移动,而平移同样实现了“角”的移动.

  5.5图案欣赏,发现生活中的图形美

  图案欣赏给学生美的感受,培养学生积极向上的情感、态度,同时也说明了数学来源于生活,用于生活.

  5.6图案设计,发挥学生的想象力,体会图形的变换美

  在作业中布置了一道图案设计题:请你利用图形的平移设计一个图案,体现出自己的审美情趣.

  设计图形是一种开放性的数学问题,它不仅可以巩固本节课所学的知识,而且通过设计图形发挥学生的想象力,学生在设计图形的过程中进一步的体会图形的变换美,动手操作带给学生的认识和理解要比欣赏图形、观察图形深刻的多.

  结束语

  本节课通过一系列的活动:

  5.1创设情境,激发学生学习兴趣

  5.2引导活动,揭示知识产生过程

  5.3动手操作,应用性质作出平移图形

  5.4开动脑筋,综合应用巩固所学

  5.5图案欣赏,发现生活中的图形美

  5.6图案设计,发挥学生的想象力,体会图形的变换美

  让学生通过探索揭示知识产生的过程,应用知识体会它与实际生活的联系,学会在变化中寻找不变的量,渗透用平移变换的思想解决问题的意识,初步建立空间观念,发展几何直觉,培养审美能力.

  以上是我对本节课的理解,不足之处,请各位专家、老师指正。谢谢!

七年级数学说课稿10

  1、说教材

  1.1教材的地位与作用

  平行线的判定(1)这节课是浙教版八年级上册第一章平行线第2节的第1课时内容,它是继“同位角、内错角、同象同角”即三线八角内容之后学习的又一个重要知识,它是继续学习平行线的其它判定的奠基知识,更是今后学习与平行线有关的几何知识的基础。因此这节内容在七~九年级这一学段的数学知识中具有很重要的地位。

  通过这一节内容的学习可以培养学生动手操作,主动探究及合作交流的能力。通过结合展示知识的发生发展过程,鼓励学生思考、归纳总结,从而培养学生良好的学习习惯和思维品质。

  12教材的重点、难点

  因为平行线的判定方法“同位角相等两直线平行”是平行线其它判定的重要依据,所以它是这节课的教学重点。由于例1判定两直线平行时需将已知条件作适当的转化,说理过程要求有条理地表示,这在学生学习“证明”之前,学生这方面的能力还比较薄弱,所以我把例1定为本节的教学难点。

  2、说目标

  21知识目标:理解平行线的判定方法1:同位角相等两直线平行,并学会运用这一判定方法进行简单的几何推理:

  2.2能力目标:通过“同位角相等、两直线平行”这一判定方法的发现过程的教学,培养学生动手实验操作能力,小组合作学习能力,归纳分析能力。通过这一判定方法运用进一步培养学生的逻辑思维和推理能力。

  2.3情感目标:体会用实验的方法得出几何性质(规律)的重要性与合理性。进一步

  培养学生积极参与主动探索的良好学习习惯和思维品质。

  这样确定教学目标期依据是:

  第一,判定方法的得到必须有一个实验操作,归纳过程,在这个过程中去揭示知识的内在联系,强化知识体系形成学生自己的认知结构。

  第二,这样的教学符合学生认识事物的规律,学生学习的认识过程和人类获取知识的过程基本相同,需要从具体到抽象,从感性上升到理性的循序渐进的过程。著名西方教育家布鲁纳认为“探索是数学教学的生命线”所以组织学生探索知识的过程,可以突出学生是认识的主体,也有利于教师的角色转化,教师应是课堂教学的组织者、引导者与合作者。

  3、说教法、学法

  3.1教法

  根据学生的学习内容应当是现实的、有意义的、富有挑战性的。这些内容要有利于学生主动地观察、实验、猜测、验证、推理与交流等活动,所以我采用了①探索性教学,以引导学生主动地探索。②综合性教学,把探索到的本质特征用概括地语言形成判定方法,从而使感性认识上升到理性认识。③实践性教学,给学生动手、动脑的'机会等。

  3.2学法指导

  (1)乐学,在整个学习过程中,让学生保持强烈的好奇心和求知欲,不断强化他们的创新意识,全身心地投入学习中去,成为学习的主人。

  (2)学会:通过新知的学习,让学生学会新知在新的情境下如何应用,从而逐步完善其认知结构。

  (3)会学:通过学生的亲身参与,更进一步体会到动手实践自主探索,合作交流是学习数学其它知识的重要方式。

  4、说教学过程

  41实验操作,探索新知

  心理学研究表明,当学生明确了学习的目的和意义时,就会对学习内容产生浓厚的

  兴趣,创设问题情境,实验操作激发了学生的创新意识、营造了良好的课堂氛围。

  问题情境:已知直线和直线外一点P,过点P画直线的平行线:

  有哪些步骤,学生根据以下平行线的画法,边画边回答:

  ①落②靠③推④画

  提问:⑴怎样用语言叙述上面抽象出来的图形(直线;被AB所截)

  ⑵画图过程中,什么角始终保持相等?(∠1=∠2)

  ⑶它们是一对什么角?(同位角)

  ⑷直线、的位置关系如何?(∥)

  ⑸可以叙述为:∵∠1=∠2∴∥

  42交流归纳,揭示新知

  ⑴让学生讨论交流,上面叙述的条件与结论,要求学生用简练的语言表达。

  目的:学生在教师的启发引导下积极地参与到观察对象的关键特征,寻求平行线的判定方法的发生过程的探索活动中去,主动地学习,积极地思考,把自己观察归纳出的结论与同学交流,加强同学间的合作与交流。为学生主动学习提供了时间与空间。

  ⑵请一个同学代表回答,其他同学进行修改与补充,学生在归纳过程中难免有不当之处,有不完整之处,教师应先肯定学生的创新结果,给予积极的评价,再作适当好的进行修正,得出结论:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单地说:同位角相等,两直线平行。

  目的:使学生的认识从感情阶段上升到理性阶段。

  43讨论质疑,突出重点

  提问:⑴现在要判定两条直线平行,关键要找什么条件成立?(同位角相等)

  ⑵那么,同位角在怎样的几何图形中才会出现?(

  两条直线被第三条直线所截,即“三线八角”)

  目的:强化判定方法的大前提及提设条件,以突出本节教学内容的重点。

  教师通过多媒体展示各种图例,要求学生说出条件与结论,更进一步突出教学的重点。

  课堂练习:

  44范例研究,突破难点

  教师用多媒体展示教材,例1:已知直线、被所截。(如图)∠1=45,∠2=135,判断与是否平行,并说明理由

  教师根据例题的图形与已知条件,作这样的分析:

  ⑴猜测与平行吗?(平行)

  ⑵要说明与平行关键要得出什么?(∠1=∠3)

  ⑶现∠1=45度,那么能得出∠3=4度吗?(能,∠2与∠3互补)

  目的:启发学生把例题已知条件作适当地转化,从而符合平行线的判定方法⑴的题设条件,作这样的启发与分析,使学生逐步掌握这种“执果索因”的分析方法,来突破难点。教师先请一个同学代表叙述说理过程,再请其也同学补充完整,这样逐步培养学生说理的条理性与层次性。

  以上教学,层层深入,始终让学生参与整个问题的“发生”和“解决”过程培养学生的探索学生的探索问题的能力,渗透辅导学生会学,巧妙突破难点。

  45反馈评价,体验成功

  为了让学生更好地掌握平行线的判定,进一步培养学生独立解决问题的能力,并培养学生的数学应用意识。学生对所学知识到底掌握了多少?为了捡测学生对本课教学目标的完成情况,把课后练习、作业作为反馈练习,让学生体验成功的喜悦,针对学生的解答情况采取措施及时弥补和调整。接着安排了课后P6的练习及课本作业题的2、3、4,特别是2、4两题完成后学生提问是否还有不同的方法?是否还能探索出其它的结论成立,为后续学习平行线的判定2和平行线的性质打下伏笔和铺垫。

  以课本练习、作业为载体,体现了教学层次性、符合新课程的基本理念,突出体现基础性、普及性与发展性。

  46归纳总结,巩固提高

  为了使学生对所学知识有一个完整而深刻的印象,通过教师提问、学生回答,进而教师归纳总结。目的是训练学生归纳概括知识的能力,并使学生在归纳过程中使知识系统化、条理化。我从以下几个方面进行小结:①本节课你学到了什么知识?

  ②平行线的判定⑴必须要找什么条件使结论成立?

  ③要找同位角相等,有时需对问题的已知条件作适当的转化。

  ④你认为还有什么不懂的

  ⑤你有什么经验与收获让同学们共享呢?

  作业的布置体现整体和局部相结合,注重分层训练,分两部分。一是必做题,作业本、同步练习,让所有学生对本课所学知识加深理解,及时巩固。二是选做题,让学有余力的同学完成,可以满足他们学习的愿望,发展他们的数学才能,也符合面向全体,因材施教原则。

  5、说评价

  在本节教学中,我注重对学生学习过程的评价,对学生积极主动参与数学活动,乐意与同伴进行交流和合作,给予充分的肯定。

  在教学活动中重视让学生暴露解决问题中的思维过程,拓展性和开放性的练习安排,充分关注学生的个性差异,保护学生的自尊心和自信心。

  在教学活动中,根据学生大量的信息反馈,了解学生对知识的掌握程度,灵活安排教学细节,从而达到预期的教学效果。

七年级数学说课稿11

  一、教材分析

  (一)教材的地位和作用

  方程是初等数学的基本知识,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础.方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的重要开端,也是增强学生学习数学、应用数学意识的重要题材.本节教材主要起着承前启后的作用,可以说是小学与中学内容上的衔接点,方法上的分水岭.

  (二)教学内容

  “从算式到方程”新教材与原教材的显著区别:方程这一部分内容不是按照由定义到解法最后讲应用的纯数学体系编排,而是首先从实际问题出发,通过比较算术方法与方程求解的区别,体会方程的优越性,让学生认识到从算式到方程是数学的一大进步.然后再通过具体实际问题所列方程,介绍方程等概念.新教材的编写更加体现了数学的应用价值.

  (三)教学重点难点

  由于学生在小学阶段已习惯用算术方法解决实际问题,对列方程不太熟练,为了防止学生仍停留在列算式解题的低层上,所以本节重点确定为:让学生在讨论问题、解决问题的过程中,比较列算式与列方程在分析数量关系上的区别及列方程时相等关系的建立.而本节中学生可能感到困难的仍是实际问题相等关系的建立.

  二、目标分析

  依据课程标准的要求,确定以下目标:

  (一)知识与技能目标

  1.了解方程等基本概念.

  2.会根据具体问题中的数量关系列出方程.

  (二)过程与方法目标

  经历从具体问题中的数量相等关系列出方程的过程,体会并认识方程是刻画现实世界的一个有效的数学模型,渗透数学建模的思想.

  (三)情感目标

  让学生进一步认识到方程与现实世界的密切关系,感受数学的价值.培养学生获取信息,分析问题,处理问题的能力。

  三、教法与学法分析

  根据本节内容与现实生活联系较紧密的特点,教学中选取学生熟悉的、感兴趣的背景材料,充分调动学生的学习热情.并恰当设计各种问题,让学生在教师的引导下,通过小组讨论、相互交流、动手操作、自主探索等活动,获得知识,积累经验,体验成功,积极推行自主学习、合作学习、探究学习等新的学习方式,努力完成教师和学生在教与学活动中角色的转变.

  四、教学过程分析

  教学目标①进一步理解用等式的性质解简简单的(两次运用等式的性质)一元一次方程

  ②初步具有解方程中的化归意识;

  ③培养言必有据的思维能力和良好的思维品质.

  教学重点用等式的性质解方程。

  知识难点需要两次运用等式的性质,并且有一定的思维顺序。

  教学过程(师生活动)设计理念

  复习引入 解下列方程:(1)x+7=1.2; (2)

  在学生解答后的讲评中围绕两个问题:

  ①每一步的依据分别是什么?

  ②求方程的解就是把方程化成什么形式?

  这节课继续学习用等式的性质解一元一次方程。由于这一课时也是学习用等式的性质解方程,所以通过复习来引入比较自然。

  探究新知 对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?

  例1 利用等式的性质解方程:

  ()0.5x-x=3.4 (2)

  先让学生对第(1)题进行尝试,然后教师进行引导:

  ①要把方程0.5x-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?

  ②要把方程-x=2.9转化为x=a的形式,必须去掉x前面的“-”号,怎么去?

  然后给出解答:

  解:两边减0.5,得0.5-x-0.5=3.4-0.5

  化简,得

  -x=-2.9,、

  两边同乘-1,得l

  x=-2.9

  小结:(1)这个方程的解答中两次运用了等式的性质(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化.

  你能用这种方法解第(2)题吗?

  在学生解答后再点评.

  解后反思:

  ①第(2)题能否先在方程的两边同乘“一3”?

  ②比较这两种方法,你认为哪一种方法更好?为什么?

  允许学生在讨论后再回答.

  例2(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米.现已做了80套成人服装,用余下的布还可以做几套儿童服装?

  在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5x米,根据题意,你能列出方程吗?

  解:设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5米,根据题意,得

  80x×3.5+1.5x=355.

  化简,得

  280+1.5x=355,

  两边减280,得

  280+1.5x-280=355-280,

  化简,得

  1.5x=75,

  两边同除以1.5,得x=50.

  答:用余下的布还可以做50套儿童服装.

  解后反思:对于许多实际间题,我们可以通过设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.

  问题:我们如何才能判别求出的答案50是否正确?

  在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程80×3.5+1.5x=355的左边,得80×3.5+1.5×50=280+75=355

  方程的左右两边相等,所以x=50是方程的解。

  你能检验一下x=-27是不是方程 的解吗?不同层次的学生经过尝试就会有不同的收获:一部分学生能独立解决,一部分学生虽不能解答,但经过老师的.引导后,也能受到启发,这比纯粹的老师讲解更能激发学生的积级性。

  这里补充一个例题的目的一是解方程的应用,二是前两节课中已学到了方程,在这里可以进一步应用,三是使后面的“检验”更加自然。

  解题的格式现在不一定要学生严格掌握。

  课堂练习①教科书第73页练习 第(3)(4)题。

  ②小聪带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解)

  建议:采用小组竞赛的方法进行评议

  小结与作业

  课堂小结建议:①先让学生进行归纳、补充。主要围绕以下几个方面:

  (1)这节课学习的内容。

  (2)我有哪些收获?

  (3)我应该注意什么问题?

  ②教师对学生的学习情况进行评价。

  ③思考题 用等式的性质求x:-2x=-5x+7引发竞争意识,提高自我评价和自我表现的机会,以达到激发兴趣,巩固知识的目的。评价包括对学生个人、小组,对学生的学习态度、情感投入及学习的效果方面等。

  本课作业①必做题:教科书第73页第4(1)、(2)、(4)题;补充:用等式的性质解方程:①3+4x=17;②4- =3

  ②选做题:教科书第73页第4(3)题,第74页第10题。

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1、力求体现新课程理念:数学教学活动必须建立在学生的认知发展水平和已有的知

  识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会……学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.本设计从新课的引人、例题的处理(包括解题后的反思)、反馈练习及小结提高等各环节都力求充分体现这一点.

  2、在传统的课堂教学中,教师往往通过大量地讲解,把学生变成任教师“灌输”的“容

  器”,学生只能接受、输入并存储知识,而教师进行的也只不过是机械地复制文化知识.新

  课程的一个重要方面就是要改变学生的学习方式,将被动的、接受式的学习方式,转变为动手实践、自主探索与合作交流等方式.本设计在这方面也有较好的体现.

  3、为突出重点,分散难点,使学生能有较多机会接触列方程,本章把对实际问题的讨论作为贯穿于全章前后的一条主线.对一元一次方程解法的讨论始终是结合解决实际问题进行的,即先列出方程,然后讨论如何解方程,这是本章的又一特点.本设计充分体现了这一特点.

七年级数学说课稿12

  老师们:您们好!非常高兴能有机会和大家来交流说课活动,谨此向在座的老师们学习。我说课的内容是华师大版九年义务教育七年级教科书代数第一册第二章第二节“数轴”的第一课时内容。

  一:教材分析:

  本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

  二:教学目标:

  根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:

  1。 使学生理解数轴的三要素,会画数轴。

  2。 能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示

  3。 向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。

  三:教学重难点确定:

  正确理解数轴的概念和有理数在数轴上的表示方法是本节课的教学重点,建立有理数与数轴上的点的对应关系(数与形的结合)是本节课的教学难点。

  四:学情分析:

  ⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。

  ⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。

  ⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  ⑷心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。

  五:教学策略:

  由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。 为充分发挥学生的主体性和教师的主导辅助作用,教学过程中设计了七个教学环节:

  (一)温故知新,激发情趣

  (二)得出定义,揭示内涵

  (三)手脑并用,深入理解

  (四)启发诱导,初步运用

  (五)反馈矫正,注重参与

  (六)归纳小结,强化思想

  (七)布置作业,引导预习

  六:教学程序设计:

  (一)温故知新,激发情趣: 首先复习提问:有理数包括那些数?学生回答后让大家讨论:你能找出用刻度表示这些数的实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:

  (1)零上5°C用 5 表示。

  (2)零下15°C 用 —15 表示。

  (3)0°C 用 0 表示。 然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?答案是肯定的,从而引出课题:数轴。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。

  (二)、得出定义,揭示内涵: 教师设问:到底什么是数轴?如何画数轴呢?

  (1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。)

  (2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸。)

  (3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。) 由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范。 画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴?”(通过教师的亲切的语言启发学生,以培养师生间的默契) 通过讨论由师生共同得到数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。 至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程。

  (三)手脑并用,深入理解:

  1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么? A、 B、 C、 D、 E、 F、 A、B、C三个图形从数轴的三要素出发,D和F是学生可能出现的错误,给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生。

  2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴,(请同学画在黑板上) 学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完后教师给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可。 我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念的理解;一个是通过动手操作加深对概念的理解。

  (四)启发诱导,初步运用: 有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学习埋下伏笔,这里不再展开。 安排课本23页的例1, 利用黑板上的例题图形让学生来操作,教师提出要求:

  1、要把点标在线上

  2、要把数标在点的上方 通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,同时激发学生的学习兴趣,调动学生的'积极性,从而使学生真正成为教学的主体。 当然,此题还可以再说出几个有理数让学生去标点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。

  (五)反馈矫正,注重参与: 为巩固本节的教学重点让学生独立完成:

  1、课本23页练习1、2

  2、课本23页3题的(给全体学生以示范性让一个同学板书) 为向学生进一步渗透数形结合的思想让学生讨论:

  3、数轴上的点P与表示有理数3的点A距离是2,

  (1)试确定点P表示的有理数;

  (2)将A向右移动2个单位到B点,点B表示的有理数是多少?

  (3)再由B点向左移动9个单位到C点,则C点表示的有理数是多少? 先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。

  (六)归纳小结,强化思想: 根据学生的特点,师生共同小结:

  1、为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?

  2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数? 让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。

  (七)布置作业,引导预习: 为面向全体学生,安排如下:

  1、全体学生必做课本25页1、2、3

  2、最后布置一个思考题: 与温度计类似,数轴上两个不同的点所表示的两个有理数大小关系如何? (来引导学生养成预习的学习习惯)

  七:板书设计:

  (略)

  总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。 以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢。

七年级数学说课稿13

各位老师:

  我说课的题目是《有序数对》.该节内容是人教版义务教育实验教材(供天津用)七年级《数学》上册第三章《平面直角坐标系》的第一节(教材86页-88页).我将从以下五个方面对本节课的设计进行说明.

  第一方面:教材分析.

  本节内容是本章的起始内容,是学生学习了条形统计图和折线统计图的基础上的学习,为以后学习直角坐标系和研究函数的运动变化奠定知识基础.虽是初始内容,但是学生在实际生活中用“数对”表示点或事物的位置的意识以很浓,只是谈到“有序”感到陌生.这些知识积淀,为完成本节课内容的学习做了强有力的支撑.同时本节内容有利于增强学生的数学符号感,是“数”向“形”的正式过渡,使学生充分认识到数学是描述解决实际生活中事物、问题的重要工具,树立学好数学的信心,提高分析问题、解决问题的能力.

  第二方面:目标分析.

  根据课标的要求和本节内容的特点,我从知识与能力、过程与方法、情感价值观三个方面确定本节课的目标.

  一、知识能力目标:

  1.理解有序数对的概念,能说出一对有序数对的实际含义.

  2.根据一对有序数对在坐标平面内能确定一个点,根据一个点能写出一对有序数对与它对应,渗透一一对应关系.

  二、过程方法目标:

  1.通过研究实际生活中座位位置的确定方法的活动,让学生树立“数“与”“形”统一的数学思想.

  2.通过研究有序数对的含义,培养学生善于发现问题,解决问题的意识,提高归纳整理信息的能力.

  三、情感价值目标:

  1.通过参于活动,同学间协商探究,培养学生的合作交流的意识和探究知识的精神.

  2.通过对有序数对的研究学习,进一步感悟数学与实际生活密切相关,树立刻苦学习品质.

  3.通过本节课的学习培养学生科学、严谨的学习品质.

  结合以上目标,我在认真研究教材的基础上,立足学生发展的宗旨,确定本节课的教学重难点:

  1.教学重点:理解有序数对的含义,熟练、科学的达到“数”与“形”的统一.

  2.教学难点:“有序数对”中“有序”的含义.

  为了更好凸显重点突破难点,我在学生已有知识、能力的基础上,通过确定座位、找路线等活动,探究有序数对的含义.同时借助多媒体课件合理设疑、启发引导、解疑点拨以达到预期的目标.

  第三方面:教、学的方法和手段.

  我认为:教师的教和学生的'学是课堂教学活动的基本元素.教师的教是围绕着学生的学展开的,学生的学是在教师的教之下进行的.数学研究性活动成为数学课堂教学的载体.课堂教学是师生之间、学生之间交往互动和共同发展的过程.为此,我采用合作探究式教学方法进行教学.

  一、教法

  我作为学生学习的组织者、引导者、合作者,注重启发学生自主学习,结合目标,针对我班学生的认知水平,我借助多媒体课件和教材插图合理设疑、巧妙点拨.适情设计梯度,增强课堂教学的趣味性和直观性,激发学生求知欲望,有效渗透数学思想、方法,提高课堂教学效益.我将采用以下方法:

  1.引导发现法:在活动中让学生观察所给图片,带着问题思考、探究知识,体悟有序数对的作用,感触数学与实际生活密切相关,调动参与学习活动的积极性和主动性.

  2.适当梯度,合理设疑法:提问是课堂教学的基本形式,它引导学生思考探究,使学生的思维条理化.我结合目标和学生个体间的差异,合理设疑、提问,引导学生完成学习.

  3.合作交流,协作探究法:学生是学习的主人,是课堂学习的主体.在我的引导下,采用学生个体探究、小组内交流的学习形式交叉进行,以逐步突破重难点,让学生体验成功,增强合作意识,树立学习信心.

  4.练习巩固法:合理选配习题,创设问题情境,让学生检测是否达标.以此提高学生运用知识、解决问题的

  能力.

  二、学法

  学生是否学会、会学成为检验课堂教学效果的标准.在本节课中我尽可能多的给学生提供参与学习活动的时间和空间,让他们体会知识的产

  生过程,学会学习.因此我注重以下学法的指导:

  1.观察分析法:给学生提供材料,让学生进行观察、分析.

  2.探究归纳法:通过学生个体研究和小组交流协作进行探究归纳,真正体会有序数对的含义,从中领悟知识的产生,归纳规律.

  3.练习巩固法:让学生树立数学重在应用的意识,检验学生掌握情况,找出差距,对症下药.

  第四方面:本节课的教学过程我设计了以下四个环节:

  第一环节:明确目标,创设情境,导入新课

  首先我请同学说出自己在班上的座位的位置,就一名同学说的例如:“3排4列”进行讨论,让学生认识它的不足,补充完善,即从左向右数,从前向后数等.再次描述自己的位置,从而体会到:①数对中数应有一定的顺序,是非常必要的.②在每一对数对中每一个数所表示的实际意义.根据学生的讨论、发言马上引出本节课题和本节课要达到什么目标,把课堂教学推进,把学生的思维推向深入.

  第二环节:协作商讨,归纳总结,达成目标

  结合教材中的插图,“电影院找座位”.我设置了问题是:①9排7号与7排9号所表示的实际意义是什么?②在实际生活中,诸如表示座位的数对第一个数字表示什么?第二个呢?③这两个人谁是对的谁是错的?请帮助错的人找到正确的座位.通过问题,学生动脑去思考、探究、归纳,真正体会“有序数对”的含义及有序的重要性.

  接下来我出示有序数对(2,4)、(4,2)设问这两个数对中的数字相同,只是他们呈现的顺序不同,结合我班的座位说说他们有什么关系?他们表示的是同一个座位吗?问题解决后我马上又写(3,3),这个数对中的“3”分别表示什么意义?有几个座位和他对应?

  第三环节:应用新知,体验成功

  在目标的指导下,针对上环节中学生的反馈,我在此环节中设计了两道习题:

  1.在黑板上画如下图样式的坐标系:

  (1)如果它代表我班同学们的座位,请同学根据给出的有序数对(1,3);(3,4);(5,3),(6,2)等确定座位.

  (2)根据我指的座位用有序数对表示.

  2.教材88页的练习.此题是用有序数对表示从甲地到乙地的路线,让学生代表说出路线坐标,让同学去画.在此题中有学生可能说出如(2,5);(3,4);(4,3);(5,2)这样的路线,此条路线是斜的它从数学角度无论是有序数对还是描点都是正确的但在实际生活中这样的路线行的通吗?让学生讨论.这样让学生再次体会学习数学的用途.

  第四环节:完善知识体系,布置作业.

  1.让学生用自己的语言概括本节课我们学习了什么知识?有什么收获?

  2.作业:教材91页1、2题以此再次巩固,进一步内化学生的知识体系和提高能力.

  本节课板书的内容比较少,板书有序数对和实际举例的有序数对目的是突出“有序数对”的概念,让学生从感官上得以完善,建立简单的坐标系是对本节课知识的巩固同时为下节课学习平面直角坐标系做下基础.

  第五方面:本节课的预期评估:

  本设计未在课堂中实施,凭借我的经验和对我校学生认知水平的了解,可能在课堂中有以下几点困惑:

  1.在确定座位位置时可能只用排或列表示.此时我不忙于纠正,而是让他自己去实际寻找,从中发现问题,解决问题.在此要多让学生发言,此环节是学习好本节课的关键.

  2.因为本节课给学生的空间很多,课堂上的时间结构相对难控制有可能就完不成教学任务,因此我力争使自己的提问更有针对性、学生能够表达清楚的不在做陈述、做好学生讨论问题的指导不让学生的思维脱离轨迹等措施来调控时间.

七年级数学说课稿14

  一、教材分析

  平行线的判定是在学生对平行线有了初步认识及学习了三线八角之后引入的。它不但加深了对“角与平行线”的认识,而且为继续研究平行线的性质、三角形、四边形等知识打下坚实的“基石”,是几何说理的重要组成部分。在本节内容之前学生对两条直线相交或平行的认识,一般停留在直观、表象的层面。本章的任务就是引导学生由表及里,深入认识相交线和平行线的本质特征,通过操作,思考,归纳和推导得到平行线的判定方法,同时在这一过程中获得逻辑思维和说理表达的初步训练。

  二、学生分析

  我校学生整体的学习能力偏弱,因此逻辑思维能力也相对薄弱,文字语言、符号语言和图形语言之间的转换能力也比较薄弱。因此在本单元的教学中,我们将教学过程分成了体会感知几何说理表达,了解划分逻辑段、补充完善几何说理过程、独立完成几何说理过程三个阶段实施。同时,两课时的教学目标制定如下:

  三、教学目标

  第一课时:

  1.知道平行线的概念及表示方法;会过直线外一点画已知直线的平行线,体验并理解平行线的基本性质。

  2.在操作过程中,理解平行线的判定方法1:同位角相等,两直线平行。并会用这一基本事实进行初步的说理,从中感知推理的规则和过程。

  第二课时:

  1.利用平行线的判定方法,导出平行线的判定方法;

  2.初步会用平行线的判定方法来判定两直线平行,并进一步学习几何说理和表达;

  3.让学生体会“把新问题转化为已经解决的问题”所体现的化归思想;

  4.让学生参与推导过程,树立学习几何知识的信心,提高学习数学的热情。

  四、教学难点、重点

  第一课时:

  1、在操作过程中体验并理解平行线的基本性质,掌握平行线判定方法一。

  2、初步会用判定方法一判定两直线平行,初步学习几何说理和表达;

  第二课时:

  1.利用平行线的判定方法1,导出平行线的判定方法2、3;

  2.初步会用平行线的判定方法2、3来判定两直线平行,进一步学习几何说理和表达。

  五、教学设计过程

  第一课时:

一、复习

  1.同位角,内错角,同旁内角的概念。

  2.找出图中的同位角,内错角,同旁内角并指出他们分别是由哪两条直线被第三条直线所截得到。

  (通过复习相关知识,为后面学生想到同位角相等推出直线平行做铺垫)

  二、学习新课

  (一)概念学习

  1.问题的引入:

  在周围世界中到处可见平行线的形象,你能举出在周围所看到的形象为平行线的例子吗?

  (学生举例)

  (教师可适当补充举例)

  (直观感受平行)

  2.通过直观图形得出平行线概念:

  同一平面内不相交的两条直线叫做平行线,“平行”用符号“//”表示。

  提问:在同一平面内,两条不重合的直线有几种位置关系?

  如图:直线a和b是平行线,也称它们互相平行,记作“a∥b”,读作“a平行于b”

  3.如何画平行线呢?

  操作1:利用直尺和三角尺画已知直线的平行线。

  (通过此问题的研究,让学生在自己动手操作的过程中,掌握画已知直线平行线的常用方法,同时为引出平行线判定方法一做准备。)

  4.思考1:过直线a外一点P画直线a的平行线,可以画几条?

  操作2:用平移三角尺的方法画出经过点P且平行于a的直线b。

  通过操作的结果得出以下的性质:

  (1).平行线基本性质:过直线外一点有且只有一条直线与已知直线平行。

  (通过此问掌握平行公理,同时巩固画已知直线平行线的方法)

  5.思考2:在画平行线中,三角尺起什么作用?

  (教师可提示引导,在三角尺平移的过程中那些量不变)

  (构成三线八角图,能否借助于相关角的大小关系来判定两直线平行)

  画直线a的平行线b时,直尺所在的直线截a、b所得的同位角∠1和∠2的大小相等

  (2).导出平行线判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两直线平行。(简单地说成:同位角相等,两直线平行)

  符号语言表示:

  如图:因为∠1=∠2

  所以a//b(同位角相等,两直线平行)

  (熟悉文字语言、符号语言、图形语言的相互转化)

  (二)应用新知

  1、填空,如图:

  (1)如果∠1=∠B,那么_____//______。

  (2)如果___________,那么AD//BC。

  (本题是定理的直接运用,(1)为填结论,2)为填条件,通过此题熟悉定理的简单运用)

  2、如果同一平面内的两条直线垂直于同一条直线,那么这两条直线平行吗?

  (1)答:____________(写平行或不平行)

  (2)根据图示,说明直线a与直线b平行的.理由。

  解:因为a⊥c,b⊥c()

  所以∠1=______,∠2=______(垂直的意义)

  得∠1=∠2(等量代换)

  所以a_______b()

  结论:同一平面内垂直于同一条直线的两条直线平行。(可以作为今后说理的依据)

  3、如图,如果∠1=110°,∠2=70°,那么AB//CD吗?为什么?

  解:将∠1的邻补角记作∠3,则∠1+∠3=180°(邻补角的意义)

  因为∠1=110°()

  所以∠3=180°-∠1=70°(等式性质)

  又因为∠2=70°()

  得∠2_____∠3()

  所以AB//CD()

  (此两题为定理的简单运用,第一题需要由垂直得出同位角相等的结论,第二题由邻补角的关系得出同位角相等,进而满足定理条件,推出直线平行。此两题讲解时,老师要做简要分析,如:第一题问要推直线平行,需要什么条件,第二题可问由∠1=110°,可推出那些角等。同时,教师要进行逻辑段的划分,让学生有获得体验感悟。为了降低难度,此两题以填空的形式呈现。)

  4、如图,已知D、B、C在一直线,CE平分∠ACD,∠2=∠B,那么AB//CE吗?为什么?

  (此题结合角平分线的性质推出同位角相等,进而证明平行,整体逻辑段较少,因此尝试让学生自己说理表达,书写逻辑段,老师结合学生实际情况做适当指导讲解)

  三.课堂小结

  1.平行线的概念;

  2.判定两条直线平行的第一种方法;

  3.平行线的基本性质;

四.作业

  1、如图,已知点P是三角形ABC的边BC上的一点。

  (1)过点P画PD平行于AB,交AC于点D。

  (2)过点P画PE平行于AC,交AB于点E。

  2、下列图中不能判断直线a与b平行的是()

  3、如图,已知∠1=∠2=∠3,请填写理由,说明AB//CD,EF//MN。

  解:因为∠1=∠2()

  ∠1=∠4()

  所以∠2=∠4()

  得AB//CD()

  因为∠1=∠3()

  又_____________(对顶角相等)

  得______________(等量代换)

  所以____________(同位角相等,两直线平行)

  4、如图,已知∠D=80°,∠BED=80°,能判定AB//CD吗?并说明理由。

  5、如图,直线l与直线a,b,c分别相交,且∠1=∠2=∠3

  (1)从∠1=∠2可以得出那两条直线平行?为什么?

  (2)从∠1=∠3可以得出那两条直线平行?为什么?

  (3)b∥c吗?为什么?

  练习说明:

  五道练习题中,第一题主要用于巩固练习画平行线的方法。后面四道练习题主要是对判定定理一的应用,难度逐步提高。第二题是定理的简单运用,需要学生通过邻补角、对顶角等关系转化成同位角相等的条件,但不需要进行说理表达,主要考察学生对定理的理解情况。第三题是在熟悉定理的前提下,考察学生说理表达、逻辑推理的能力,但以填空形式呈现,使难度降低。第四、五题是在第二、三题的基础上让学生自己尝试独立书写说理过程。同时,第五题本是书本上的例题,我放在习题中的目的是为了让学生有充足的时间研究,为第二课时引出判定定理二、三做铺垫。

  第二课时:

一、复习引入

  1.“三线八角”的研究:两条直线被第三条直线所截,在形成的八个角中根据位置关系的不同,出现了“同位角、内错角、同旁内角”这三种角。

  2.上节课中,学习了判定两条直线平行的基本方法,简单的说:同位角相等,两直线平行

  二、新课

  今天,继续来研究平行线的判定问题,引出课题。

  请同学们猜想:除了同位角相等,两直线平行,还有其它的判定两条直线平行的方法吗?

  (学生有了第一课时的经验,同时,作业的最后一题中就隐含了内错角相等,可推出两直线平行的结论,学生就有可能从内错角、同旁内角这两类角的特殊关系考虑,老师可做适当提示。)

  可能结论:①内错角相等,两直线平行;②同旁内角互补,两直线平行;③同旁内角相等,两直线平行

  逐一说理:如图①已知直线a、b被直线l所截,∠1=∠2,试说明a∥b。

  如图②已知直线a、b被直线l所截,∠1∠2=180°,试说明a∥b。

  结合图形③(反例),说明第三种猜测错误:

  归纳、总结部分:

  到现在为止,学过了三种判定两条直线平行的方法:①同位角相等,两直线平行;内错角相等,两直线平行;③同旁内角互补,两直线平行。

  符号语言表示:

  如图:因为∠1=∠2

  所以a//b(同位角相等,两直线平行)

  因为∠2=∠3

  所以a//b(内错角相等,两直线平行)

  因为∠2+∠4=180°

  所以a//b(同旁内角互补,两直线平行)

  (在此环节中学生体验猜想——说理——归纳的过程,初步体会说明一个命题正确需要说理,说明一个命题错误,只要举一个反例。同时,学生进一步体会说理表达的基本形式。进一步熟悉文字语言、符号语言、图形语言的相互转化)

 三、应用新知

  1.如图直线a、b被直线l所截,已知①∠1=∠2,②∠2=∠3,③∠1∠4=180°,试说明a∥b。

  解:∵∠1=∠2(已知)

  ∴a∥b()

  ∵∠2=∠3(已知)

  ∴a∥b()

  ∵∠1∠4=180°(已知)

  ∴a∥b()

  2.如图,已知∠1=40°,∠B=40°,试说明DE∥BC。

  解:∵∠1=40°(已知)

  ∠B=40°(已知)

  ∴∠=∠()

  ∴DE∥BC()

  3.如图,已知∠B=50°,∠1=130°,试说明:AB∥CD。

  解:∵∠B=50°()

  ∠1=130°()

  ∴∠1∠B=°

  ∴AB∥CD()

  4.如图,已知∠1=115°,∠2=65°,那么AB∥CD吗?为什么?

  (第一题是定理的直接运用,起到巩固三个定理,进一步明确定理的条件及结论的作用。二、三两题是定理的简单应用,需要学生结合图形,分析条件,判断运用三个定理中的哪一个定理解决问题。比如第三题可以用判定2,也可用判定3,就可以做一个比较优劣。同时以填空的形式降低难度,学生在这两题中进一步体会说理表达的基本规范,教师进一步指导学生认识逻辑段的划分。第四题三个判定定理都能运用,灵活性较大,因此让学生自己尝试解决,先让学生进一步尝试独立书写说理过程,其次,将学生的不同解法展现,拓宽学生思路,相互学习。)

四、课堂小结

  1.学习了判定两条直线平行的三种方法;

  2.会运用它们判定两条直线平行。

  五、作业

  1、填空:如图,(1)如果∠1=∠2,那么_____//_____。

  (2)如果∠3=∠4,那么_____//____。

  (3)如果∠5=∠6,那么____//_____。

  (4)如果∠7=∠8,那么____//_____。

  2、填空:如图,(1)因为∠A=∠3(已知)

  所以_______//________()

  (2)写出两个能得到BC//DE的条件_________。

  (3)若∠1=70°,当∠5=______时,BC//DE。

  3、如图,直线l分别与直线a、b相交,已知∠1=110°,∠2=70°。

  (1)填写a//b的理由。(解法一)

  解:把∠1的邻补角记为∠3,则∠1+∠3=180°(邻补角的意义)。

  因为∠1=110°,()

  所以∠3=180°-∠1=70°,又因为∠2=70°,得∠2=∠3()

  所以a//b()

  (2)填写a//b的理由。(解法二)

  解:把∠1的对顶角记为∠4,则∠1=∠4()。

  因为____________,(已知)

  所以____________,(等量代换)

  又因为∠2=70°,得_________________(等式性质)

  所以a//b()

  (3)请尝试用“同位角相等,两直线平行。”说明a//b。

  4、如图,已知∠1=∠3,BE平分∠ABC,要说明DE//BC,请按照正确的说理顺序把下面几句话重新排列,并说明每一步的理由。

  (1)因为∠1=∠3

  (2)所以∠2=∠3

  (3)因为BE平分∠ABC

  (4)所以DE//BC

  (5)所以∠1=∠2

  5、如图,已知∠C=∠D,∠D=∠1试说明:AC∥DF,DB∥EC

  (选作)6、如图,在△ABC中,DE垂直BC,∠FEG=90°,∠1=∠2,那么AB//EG吗?并说明理由。

  练习说明:

  第一题是对定理的直接运用,但要考察学生在较复杂的图形中找出符合条件的基本图形。第二题,在第一题的基础上提高要求,需要学生结合图形自己找出证题的条件。第三题是把练习册上的一道练习改编所得,其中第(1)题没变,主要填写各步的理由,而第(2)题则和第(1)题相反,给出理由,补全步骤。第(3)问则是全部自己书写,但明确方法,三个问题层层递进,逐步加深。同时,第三题有和课堂练习4基本相同,只有数字不同,这也是对课堂学生学习情况的一种检验。第四题综合运用了角平分线的性质和判定定理2,但是给出了说理的所有步骤,要求排出正确步骤,有了一定的指导性,既引导学生在分析过程中形成正确思路,又一定程度降低了难度。第五题在前面的基础上更进一步,要求学生独立完成,对说理过程的规范表达有要求。第六综合性较强,涉及垂直的定义,同角的余角相等,内错角相等等,对学生的逻辑推理及书面表达能力的要求都比较高,因此,留作选做题。

七年级数学说课稿15

尊敬的领导、老师们:你们好

  今天我说课的题目是北师大版数学七年级下册第四章第3节《探索三角形全等的条件》第3课时。下面,我将从教材分析、教学方法及教学过程等几个方面对本课的设计进行说明。

  一、教材分析(一)本节内容在教材中的地位与作用。

  《探索三角形全等的条件》对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的。本节课中的内容是《探索三角形全等的条件》中的最后一个判定,在学习新知识中我们复习前面所学的SSS,ASA,AAS,也为后面的尺规作图打好基础。另外也对后面的三角形的相似等知识学习提供了保障。本节课的知识具有承上启下的作用。

  (二)教学目标

  在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:

  (1)知识目标:经历用两角一边进行画图和验证三角形是否全等的过程中,探索出全等三角形的条件“边角边”,并能应用它们来判定两个三角形是否全等。还对两边分别相等且其中一组等边的对角分别相等,两个三角形不一定全等进行探索。

  (2)能力目标:在探索三角形全等条件的过程中,让学生学会有条理地思考、分析、解决问题的能力,培养学生推理意识和能力。有关数学题的答题规范化的培养。

  (3)情感目标:培养学生敢于实践,勇于发现,大胆探索,合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣,树立学好数学的信心。

  (三)教材重难点

  学情分析:

  学生现在处于几何推理论证的初步阶段,从这章开始,学生应该逐步学会几何证明,几何证明题的推理证明的书写对学生来说难度较大,同时,我们知道,以前学生学习几何都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难点。

  鉴于以上学情分析,我把本节课的重难点设置为:本节课的重点是掌握三角形全等的条件“SAS”,并能应用它们来判定两个三角形是否全等。探索“两边分别相等且其中一组等边的对角分别相等,两个三角形不一定全等”是难点。我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。

  (四)教学具准备,教具:相关多媒体课件;

  学具:剪刀、纸片、圆规、直尺。

  二、教法选择与学法指导本节课主要是“边角边”这一基本事实的'发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。并且用导学案的形式让学生对本节课内容很好的把握。

  三、教学过程(一)温故知新

  1.我们在前面学过____________________方法判定两个三角形全等。

  (二)设疑引题,激发求知欲望

  首先,我出示一个实际问题:

  问题:小颖作业本上画的三角形被墨迹污染,她想画出一个与原来完全一样的三角形,她该怎么办呢?你能帮帮小颖吗?

  这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。

  (三)引导活动“想一想”,揭示知识产生过程

  数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。探索三角形全等条件重要学生的探索能力的培养。

  活动一:让学生通过复习回顾已学过的判断两个三角形全等的方法引出本节课所要探究的两边一角能不能判断两个三角形全等。

  活动二:让学生首先通过画图对两边及其夹角对应相等的情况进行对比来判断所画的两个三角形是否全等。特别的小组用叠合的方法来进行判断三角形全等,由此得到判定两个三角形全等的方法4(两边及其夹角分别相等的两个三角形全等,简写为“边角边”或“SAS”)。

  活动三:在学生画出有两边及其一边的对角对应相等的两个三角形的图上,让学生观察,看画出的三角形是否一定全等。由此得出结论,这样的两个三角形不一定全等。老师引导学生得出结论,并揭开秘密,针对此结论用一个生活中的例子来进行巩固。联系实际:请同学们观察下面图形中三角形全等吗?由于此图来自本城市的重要工程,所以学生很快能理解两边分别相等且其中一组等边的对角分别相等的两个三角形不一定全等的结论。并说明数学在实际生活中是存在的,并可以应用数学解答实际问题。

  (四)练一练,用了三个例子来巩固“边角边”的应用。由老师引导--学生解决—学生点评—教师点评的流程讲解练习。让学生知道一般的我们写三角形的有关题时,对应顶点应写在对应的位置上,并且要知道每一步的理由,但不一定要写出理由来。链接中考要求对学生的答题规范化能获取高分。比如在第三个题中:3.在△ABC中,AB=AC,AD是∠BAC的角平分线。那么BD与CD相等吗?为什么?回答相等,然后再说明理由。这样才规范。还有公共边的写法,第一题中就写成“AC=CA”而第三题的公共边应写成AD=AD.中考答题规范化应该从七年级抓起。

  (五)作业布置:完成学案剩下的题。

  (六)课堂小结

  (1)本节课你学了什么?

  (七)老师的赠言。每一节课都送给学生一句有关学习的警句,促进学生对学习兴趣培养,让他们从“你要学”转化为“我想学”。

  附:

  复习:SSS,ASA,AAS

  结论:两边及其夹角分别相等的两个三角形全等,简写为“边角边”或“SAS”.

【七年级数学说课稿】相关文章:

七年级数学数轴说课稿01-06

七年级数学说课稿05-15

七年级数学数轴说课稿[精品]03-04

七年级数学整式加减说课稿01-06

七年级数学2整式加减说课稿03-03

七年级数学整式加减说课稿(推荐)03-05

小学数学经典说课稿10-23

数学活动说课稿07-21

数学说课稿07-03

《数学广角》说课稿04-03

Copyright©2003-2024xianxue.com版权所有