- 相关推荐
高中数学椭圆说课稿
作为一名为他人授业解惑的教育工作者,就不得不需要编写说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。说课稿应该怎么写才好呢?以下是小编为大家整理的高中数学椭圆说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
高中数学椭圆说课稿1
与技能:准确理解椭圆的定义,掌握椭圆的标准方程及其推导。
过程与方法目标:通过引导亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力。
情感、态度与价值观目标:通过经历椭圆方程的化简,增强学生战胜困难的意志品质并数简洁美、对称美,通过讨论椭圆方程推导的等价性养成学生扎实严谨的态度。
二、重点、难点:
重点是椭圆的定义及标准方程,难点是推导椭圆的标准方程。
三、教学过程:
教学环节
教学和形式
意图
复习
提问:
(1)圆的定义是什么?圆的标准方程的形式?
(2)推导圆的标准方程呢?
激活学生已有的认知结构,为本课推导椭圆标准方程提供了方法与策略。
讲授新课
一、授新
1.椭圆的定义:(略)
过程:
操作-----交流-----归纳-----多媒体演示-----联系生活
形成概念:
操作:
固定一条细绳的两端,用笔尖将细绳拉紧并运动,在纸上你得到了怎样的图形?
在动手过程中,培养学生观察、辨析、归纳问题的能力。
在变化的过程中发现圆与椭圆的联系;建立起用联系与发展的观点看问题;为下一节深入研究方程系数的几何意义埋下伏笔。
教学环节
深化概念:
注:
1、平面内。
2、若,则点p的轨迹为椭圆。
若,则点p的轨迹为线段。
若,则点p的轨迹不存在。
联系生活:
情境1.生活中,你见过哪些类似椭圆的图形或物体?
情境2.让学生观察倾斜的圆柱形水杯的水面边界线,并从中抽象出数学模型.(用多媒体演示)
情境3.观看天体运行的轨道图片。
教学内容和形式:
准确理解椭圆的定义。
渗透数学源于生活,圆锥曲线在和中有着广泛的应用。
设计意图:
2.椭圆的标准方程:
例:已知点、为椭圆的两个焦点,p为椭圆上的任意一点,且,其中,求椭圆的方程
活动过程:点拨-----板演-----点评
一般步骤:
(1)建系设点
(2)写出点的集合
(3)写出代数方程
(4)化简方程:
请一位基础较好,书写规范的板演。
(5)证明:讨论推导的等价性
掌握椭圆标准方程及推导方法。
培养学生战胜困难的意志品质并感受数学的简洁美、对称美。
养成学生扎实严谨的科学态度。
应用
举例
教学环节
二、应用
例1、(1)椭圆的焦点坐标为:
(2)椭圆的焦距为4,则m的值为:
活动过程:思考-----解答-----点评
例2、已知椭圆焦点的坐标分别是(-4,0)、(4,0),椭圆上一点p到两焦点的距离的和等于10,求椭圆的标准方程
活动过程:思考-----解答-----点评
变式已知椭圆焦点的坐标分别是(-4,0)(4,0),且经过点,求椭圆的标准方程。
求椭圆的标准方程
活动过程:思考-----解答-----点评
认清椭圆两种标准方程形式上的特征。
课堂:
提问:本节课学习的主要知识是什么?你学会了哪些数学与方法?
活动过程:教师提问-----学生小结-----师生补充完善。
让学生回顾本节所学知识与方法,以逐步提高学生获取知识的能力。
作业布置:
作业:教材第95页,练习2、4,第96页习题8-1,1、2、3、探索:平面内到两个定点的距离差、积、商为定值的点的轨迹是否存在?若存在轨迹是什么?
分层次布置作业,帮助学生巩固所学知识;为学有余力的学生留有进一步探索、发展的空间。
四、板书设计
8.1椭圆及其标准方程
一、复习引入二、新课讲解三、习题研讨
1.椭圆的定义
2.椭圆的标准方程
总体说明:本节课的'设计力图贯彻"以发展为本"的理念,体现"教师为主导,学生为主体"的现代教学思想。在对椭圆定义的讲授中,遵循从生动直观到抽象概括的教学原则和教学途径,通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力;让椭圆生动灵活地呈现在学生面前,更有助于学生理解椭圆的内涵和外延。对本课另一难点标准方程推导的讲授中,在关键处设疑,以疑导思,让学生先从目的、再从方法上考虑,引导学生对比、分析,师生共同完成。通过经历椭圆方程的化简,增强了学生战胜困难的意志品质并体会数学的简洁美、对称美.通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。设计的例题及变式练习,充分利用新知识解决问题,使所学内容得以巩固。变式(2)的设计让学生站在方程的角度认清椭圆两种标准方程形式上的特征,将学思维提升到了一个新的高度。课后分层次布置作业,帮助学生巩固所学知识;课后探索更为学有余力的学生留有进一步探索、发展的空间。在教学中借助多媒体生动、直观、形象的特点来突出教学重点。自始至终很好地调动学生的积极性,挖掘他们的内在潜能,提高学生的素质。
高中数学椭圆说课稿2
一、说教材:
1、地位及作用:
“椭圆及其标准方程”是高中《解析几何》章第七节内容,是本书的重点内容之一,也是历年、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的学习打好基础,因此本节内容具有承前启后的作用。
2、教学目标:
根据《教学大纲》,《说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标:
(1)知识目标:掌握椭圆的.定义和标准方程,以及它们的应用。
(2)能力目标:
(a)培养学生灵活应用知识的能力。
(b)培养学生全面分析问题和解决问题的能力。
(c)培养学生快速准确的运算能力。
(3)目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性的辩证唯物主义观点。
3、重点、难点和关键点:
因为椭圆的定义和标准方程是解决与椭圆问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的两次平方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的推导和化简,因此建立一个适当的直角坐标系是本节的关键。
二、说教材处理
为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理:
1、学生状况分析及对策:
2、教材内容的组织和安排:
本节教材的处理上按照人们认识物的规律,遵循由浅入深,循序渐进,层层深入的原则组织和安排如下:
(1)复习提问(2)引入新课(3)新课讲解(4)反馈练习(5)归纳(6)布置作业
三、说教法和学法
1、为了充分调动学生学习的积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。请学生参与课堂。加强方程推导的指导,是传授知识与培养能力有机的溶为一体,为此,本节课采用“引导教学法”。
2、利用电脑所画图形的动态演示总结规律。同时利用电脑的动态演示激发学生的学习兴趣。
四、教学过程
教学环节
3、设a(-2,0),b(2,0),三角形abp周长为10,动点p轨迹方程。
例1属基础,主要反馈学生掌握基本知识的程度。
例2可强化基本技能训练和基本知识的灵活运用。
小结
为使学生对本节内容有一个完整深刻的认识,教师引导学生从以下几个方面进行小结。
1、椭圆的定义和标准方程及其应用。
2、椭圆标准方程中a,b,c诸关系。
3、求椭圆方程常用方法和基本思。
通过小结形成知识体系,加深对本节知识的理解培养学生的归纳总结能力,增强学生学好圆锥曲线的信。
布置作业
(1)77页——78页1,2,3,79页11
(2)预习下节内容
巩固本节所学概念,强化基本技能训练,培养学生良好的学习习惯和品质,发现和弥补教学中的遗漏和不足。
高中数学椭圆说课稿3
一、教学背景分析
(一)教材地位分析:《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例,从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用、
(二)重点、难点分析:本节课的重点是椭圆的定义及其标准方程,标准方程的推导是本节课的难点,要突破这一难点,关键是引导学生正确选择去根式的策略、
(三)学情分析:在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识,因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何还不长、学习程度也较浅,并且还受到这一年龄段学习心理和认知结构的影响,在学习过程中难免会有些困难、如:由于学生对运用坐标法解决几何问题掌握还不够,因此从研究圆到椭圆,学生思维上会存在障碍、
二、教学目标设计
(一)知识目标:掌握椭圆的定义及其标准方程;会根据条件写出椭圆的标准方程;通过对椭圆标准方程的探求,再次熟悉求曲线方程的一般方法、
(二)能力目标:学生通过动手画椭圆、分组讨论探究椭圆定义、推导椭圆标准方程等过程,提高动手能力、学习能力和运用知识解决实际问题的能力、
(三)情感目标:在形成知识、提高能力的过程中,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的、
三、教法学法设计
(一)教学方法设计:为了更好地培养学生自主学习能力,提高学生的综合素质,我主要采用探究式教学方法、一方面我通过设置情境、问题诱导充分发挥主导作用;另一方面学生通过对我提供的素材进行直观观察→动手操作→讨论探究→归纳抽象→总结规律的过程充分体现主体地位、
使用多媒体辅助教学与自制教具相结合的设计,实现多媒体快捷、形象、大容量的优势与自制教具直观、的优势的.结合,既突出了知识的产生过程,又增加了课堂的趣味性、
1、掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;
2、能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;
3、通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;
4、通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;
5、通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识、
四、教学建议
教材分析
1、知识结构
2、重点难点分析
重点是椭圆的定义及椭圆标准方程的两种形式、难点是椭圆标准方程的建立和推导、关键是掌握建立坐标系与根式化简的方法。
椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程、椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用、先讲椭圆也与第七章的圆的方程衔接自然、学好椭圆对于学生学好圆锥曲线是非常重要的。
(1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解、
另外要注意到定义中对“常数”的限定即常数要大于、这样规定是为了避免出现两种特殊情况,即:“当常数等于时轨迹是一条线段;当常数小于时无轨迹”。这样有利于集中精力进一步研究椭圆的标准方程和几何性质、但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性。
(2)根据椭圆的定义求标准方程,应注意下面几点:
①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方、应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得,而且也可以使最终得出的方程形式整齐和简洁。
②设椭圆的焦距为,椭圆上任一点到两个焦点的距离为,令,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会、
③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点、要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项、
④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程“而没有证明,”方程的解为坐标的点都在椭圆上”、这实际上是方程的同解变形问题,难度较大,对同学们不作要求。
(3)两种标准方程的椭圆异同点
中心在原点、焦点分别在轴上,轴上的椭圆标准方程分别为:它们的相同点是:形状相同、大小相同,都有,、不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同、椭圆的焦点在轴上标准方程中项的分母较大;椭圆的焦点在轴上标准方程中项的分母较大、另外,形如中,只要,同号,就是椭圆方程,它可以化为。
(4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法、例3有三个作用:是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆。
【高中数学椭圆说课稿】相关文章:
《椭圆的标准方程的求法》说课稿04-29
高中数学说课稿05-04
高中数学说课稿06-28
高中数学优秀说课稿03-04
关于高中数学说课稿02-18
高中数学说课稿精选范文04-26
高中数学说课稿四篇01-28
【推荐】高中数学说课稿三篇02-27
高中数学《平面向量》优秀说课稿12-16