当前位置:贤学网>范文>教学计划> 高三数学教学计划

高三数学教学计划

时间:2022-01-22 18:34:51 教学计划 我要投稿

高三数学教学计划模板汇总9篇

  日子如同白驹过隙,不经意间,我们将带着新的期许奔赴下一个挑战,立即行动起来写一份教学计划吧。为了让您不再有写不出教学计划的苦闷,下面是小编整理的高三数学教学计划9篇,希望能够帮助到大家。

高三数学教学计划模板汇总9篇

高三数学教学计划 篇1

  实行新教材后,高考的要求和高考的内容都发生了很大的变化,这就要求我们必须转变观念,立足课本,夯实基础。复习时要求全面周到,注重教材的科学体系,打好双基,准确掌握考试内容,做到复习不超纲,不做无用功,使复习更有针对性,细心推敲对高考内容四个不同层次的要求,准确掌握那些内容是要求了解的,那些内容是要求理解的,那些内容是要求掌握的,那些内容是要求灵活运用和综合运用的;细心推敲要考查的数学思想和数学方法;在复习基础知识的同时要注重能力的培养,要充分体现学生的主体地位,将学生的学习积极性充分调动起来,教学过程中,不仅要展现教师的分析思维,还要充分展现学生的思考思维,把教学活动体现为思维活动;同时还适当增加难度,教学起点总体要高,注重提优补差,新高考将更加注重对学生能力的考查,适当增加教学的难度,为更多优秀的学生脱颖而出提供了更多的机会和空间,有利于优秀的学生最大限度发挥自己的潜能,取得更好的成绩;对于差生充分利用辅导课的时间帮助他们分析学习上存在的问题,解决他们学习上的困难,培养他们学习数学的兴趣,激励他们勇于迎接挑战,不断挖掘潜力,最大限度提高他们的数学成绩。

  一、因材施教全面提高

  今年高考采用新的模式,学生选修的科类不同,因此学生的整体情况不一样,同一班级的学生,层次差别也较大,给教学带来很大的难度,这就要求每位教师要从整体上把握教学目标,又要根据各班实际情况制定出具体要求,对不同层次的学生,应区别对待,这样,对课前预习、课堂训练、课后作业的布置和课后的辅导的内容也就因人而异,对不同班级、不同层次的学生提出不同的要求。在课堂提问上也要分层次,基础题一般由学生来做,以增强他们的信心,提高学习的兴趣,对能力较强的学生要把知识点扩展开来,充分挖掘他们的潜力,提高他们逻辑思维能力和分析问题、解决问题的能力。课后作业的`布置,既有全体学生的必做题也有针对较强能力的学生的思考题,教师在课后对学生的辅导的内容也因人而异,让所有的学生都能有所收获,使不同层次的学生的能力都能得到提高。

  二、优化练习提高练习的有效性

  知识的巩固,技能的熟练,能力的提高都需要通过适当而有效的练习才能实现;首先,练习题要精选,题量要适度,注意题目的典型性和层次性,以适应不同层次的学生;对练习要全批全改,做好学生的错题统计,对于错的较多的题目,找出错的原因。练习的讲评是高三数学教学的一个重要的环节,为了最大限度地发挥课堂教学的效益,课堂的讲评要科学化,要注重教学的效果,不该讲的就不讲,该点拨的要点拨,该讲的内容一定要讲透;对于典型问题,要让学生板演,充分暴露学生的思维过程,加强教学的针对性。多做限时练习,有效的提高了学生的应试能力。

  四、加强应试指导培养非智力因素

  充分利用每一次练习、测试的机会,培养学生的应试技巧,提高学生的得分能力,如对选择题、填空题,要注意寻求合理、简洁的解题途经,要力争保准求快,对解答题要规范做答,努力作到会而对,对而全,减少无谓失分,指导学生经常总结临场时的审题答题顺序、技巧,总结考前和考场上心理调节的做法与经验,力争找到适合自己的心理调节方式和临场审题、答题的具体方法,逐步提高自己的应试能力;帮助学生树立信心、纠正不良的答题习惯、优化答题策略、强化一些注意事项

  三、第一轮复习是整个数学复习的基础工程

  其主要任务是在老师的指导下,让学生自己对基础知识、基本技能进行梳理,使之达到系统化、结构化、完整化;在老师的组织下通过对基础题的系统训练和规范训练,使学生准确理解每一个概念的高考要求和考纲要求,能从不同角度把握所学的每一个知识点所有可能考查到的题型,熟练掌握各种典型问题的通性、通法。只有真正改变教师一包到底,实施学生自主学习,才能真正达到夯实双基的目的。为此,我们延长第一轮的复习时间,减少第二轮的时间,目的是能使第一轮的复习确实做到细且实。

  四、第一轮复习必须面向全体学生

  降低复习起点,在夯实双基的前提下,注重培养学生的能力,包括:空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明、体系构建等诸多方面,提高学生对实际问题的阅读理解、思考判断、分析解决能力;教学要充分考虑到本校、本班学生的实际水平,坚决反对脱离学生实际的任意拔高和只抓几个优生放弃大部分差生的不良做法,不做或少做无效劳动,加大分层教学和个别指导的力度,狠抓复习的针对性、实效性,提高复习效果。

  五、近三年高考试题提醒我们要善于将基础问题学实学活。

  要把复习内容中反映出来的数学思想方法的教学体现在复习的全过程中,使学生真正领悟到如何灵活运用数学思想方法把握、数学思维方法思考、数学基本方法解题。要明确复习的最终目标是新题会解,而不是单单立足于陈题的熟练,因此,如何培养学生的数学素养和创新意识是永恒的话题。

  六、要强化运算能力、表达能力和阅读理解能力的训练,今年高考对运算能力的要求明显加大。课堂教学时要有意识地安排时间让学生进行完整的规范的解题训练,对解题过程和书写表达提出明确具体的要求,培养学生良好的解题习惯,提高解题的成功率和得分率,这也是为了适应网上阅卷的需要。同时要加强处理信息与数据、和寻求设计合理、简捷的运算途径方面的训练,提高阅读理解的水平。

高三数学教学计划 篇2

  一、指导思想

  以教学改革为动力、以学校创建为前提、以提高课堂效率为目的、以自主教育为模式、以现代信息技术为手段、以培养学生的创新能力为目标,全

  面改进教育教学方法,更新教育观念,改变传统教学模式,培养学生综合素质,搞好本组教育教学工作,力争高一、高二的常规教学,高三的复习

  备考工作更上一个台阶。

  二、具体措施

  1、相互学习,提高素质

  利用教研备课、活动时间,认真学习有关教育教学理论,继续加强三新学习,吸收教改信息,提升教育理论,改进教学方法,同时开展走出去,请

  进来的办法进行校际交流,专家培训,名师讲座,扩大视野,丰富提高,完善积累,做到善学才能善解,善研才能善教、善教才有高效。

  2、开展说课资源共

  教学研究重要的是认真钻研教材内容,吃透教材大纲,这是搞好教研活动,做好教学工作的根本保证。集体备课是发挥集体优势,钻研教材的有效

  途径,在集体备中,以说课的形式对教材的'教学目标、重点、难点及成因、编者意图、教材的前后联系进行阐述,提出突出重点,解决难点的措

  施,说本单元的备课的内在联系,典型练习的变式训练,解题的规律方法技巧,思想方法的渗透,学法指导等,进行组内教流,互相切磋,发挥骨

  干教 师的传帮带作用。

高三数学教学计划 篇3

  一、学生在数学学习上存在的主要问题

  我校高一学生在数学学习上存在不少问题,这些问题主要表此刻以下方面:

  1、进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,潜力要求都是一次飞跃.这就要求务必掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析潜力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的构成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的资料还是高初中教材都不讲的脱节资料,如不采取补救措施,查缺补漏,分化是不可避免的。

  2、被动学习.许多同学进入高中后,还像初中那样,有很强的依靠心理,跟随老师惯性运转,没有掌握学习主动权.表此刻不定计划,坐等上课,课前没有预习,对老师要上课的资料不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学资料。不明白或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

  3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。

  4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。

  5、不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是明白怎样做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”。

  此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和潜力,对数学思想方法重视不够或掌握状况不好,缺乏将实际问题转化为数学问题的潜力,缺乏准确运用数学语言来分析问题和表达思想的潜力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高。

  二、教学策略思考与实践

  针对我校高一学生的具体状况,我在高一数学新教材教学实践与探究中,贯彻“因人施教,因材施教”原则。以学法指导为突破口;着重在“读、讲、练、辅、作业”等方面下功夫,取得必须效果。

  加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

  制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划必须要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。

  课前自学是学生上好新课,取得较好学习效果的基础.课前自学不仅仅能培养自学潜力,而且能提高学习新课的兴趣,掌握学习主动权.自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。

  上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们明白什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方能够一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。

  及时复习是高效率学习的重要一环,透过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”。

  独立作业是学生透过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程.这一过程是对学生意志毅力的考验,透过运用使学生对所学知识由“会”到“熟”。

  解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,透过点拨使思路畅通,补遗解答的过程.解决疑难必须要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。

  系统小结是学生透过用心思考,到达全面系统深刻地掌握知识和发展认识潜力的重要环节.小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,透过分析、综合、类比、概括,揭示知识间的内在联系.以到达对所学知识融会贯通的目的.经常进行多层次小结,能对所学知识由“活”到“悟”。

  课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等.课外学习是课内学习的补充和继续,它不仅仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作潜力,激发求知欲与学习热情。

  1、读。俗话说“不读不愤,不愤不悱”。首先要读好概念。读概念要“咬文嚼字”,掌握概念内涵和外延及辨析概念。例如,集合是数学中的一个原始概念,是不加定义的。它从常见的“我校高一年级学生”、“我家的家用电器”、“太平洋、大西洋、印度洋、北冰洋”及“自然数”等事物中抽象出来,但集合的概念又不同于特殊具体的实物集合,集合的确定及性质特征是由一组公理来界定的。“确定性、无序性、互异性”常常是“集合”的代名词。

  再如象限角的概念,要向学生解释清楚,角的始边与x轴的非负半轴重合和与x轴的正半轴重合的细微差别;根据定义如果终边不在某一象限则不能称为象限角等等。这样能够引导学生从多层次,多角度去认识和掌握数学概念。其次读好定理公式和例题。阅读定理公式时,要分清条件和结论。如高一新教材(上)等比数列的前n项和Sn.有q≠1和q=1两种情形;对数计算中的一个公式,其中要求读例题时,要注重审题分析,注意题中的隐含条件,掌握解题的方法和书写规范。如在解对数函数题时,要注意“真数大于0”的隐含条件;解有关二次函数题时要注意二次项系数不为零的隐含条件等。读书要鼓励学生相互议论。俗语说“议一议知是非,争一争明道理”。例如,让学生议论数列与数集的联系与区别。数列与数的集合都是具有某种共同属性的全体。数列中的数是有顺序的,而数集中的元素是没有顺序的;同一个数能够在数列中重复出现,而数集中的元素是没有重复的(相同的.数在数集中算作同一个元素)。在引导学生阅读时,教师要经常帮忙学生归类、总结,尽可能把相关知识表格化。如一元二次不等式的解状况列表,三角函数的图象与性质列表等,便于学生记忆掌握。

  2、讲。外国有一位教育家以前说过:教师的作用在于将“冰冷”的知识加温后传授给学生。讲是实践这种传授的最直接和最有效的教学手段。首先讲要注意循序渐进的原则。循序渐进,防止急躁。由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些状况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕能够完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能到达了自动化或半自动化的熟练程度。

  每堂新授课中,在复习必要知识和展示教学目标的基础上,老师着重揭示知识的产生、构成、发展过程,解决学生疑惑。比如在学习两角和差公式之前,学生已经掌握五套诱导公式,能够将求任意角三角函数值问题转化为求某一个锐角三角函数值的问题。此时教师应进一步引导学生:对于一些半特殊的教(750度,150度等)能不能不透过查表而求出精确值呢这样两角和差的三角函数就呼之欲出了,极大激发了学生的学习兴趣。讲课要注意从简单到复杂的过程,要让学生从感性认识上升到理性认识。鼓励学生应用心、主动参与课堂活动的全过程,教、学同步。让学生自己真正做学习的主人。

  例如,讲解函数的图象应从振幅、周期、相位依次各自进行变化,然后再综合,并尽可能利用多媒体辅助教学,使学生容易理解。其次讲要注重突出数学思想方法的教学,注重学生数学潜力的培养。例如讲到等比数列的概念、通项公式、等比中项、等比数列的性质、等比数列的前n项和。能够引导学生对照等差数列的相应的资料,比较联系。让学生更清楚等差数列和等比数列是两个对偶概念。

  3、练。数学是以问题为中心。学生怎样应用所学知识和方法去分析问题和解决问题,务必进行练习。首先练习要重视基础知识和基本技能,切忌过早地进行“高、深、难”练习。鉴于目前我校高一的生源现状,基础训练是很有必要的。课本的例题、练习题和习题要求学生要题题过关;补充的练习,应先是课本中练习及习题的简单改造题,这有利于学生巩固基础知识和基本技能。让学生透过认真思考能够完成。即让学生“跳一跳能够摸得着”。必须要让学生在练习中强化知识、应用方法,在练习中分步到达教学目标要求并获得再练习的兴趣和信心。例如根据数列前几项求通项公式练习,在新教材高一(上)P111例题2上简单地做一些改造,便能够变化出各种求解通项公式方法的题目;再如数列复习参考题第12题;就是一个改造性很强的数学题,教师能够在上面做很多文章。其次要讲练结合。学生要练习,老师要评讲。多讲解题思路和解题方法,其中包括成功的与错误的。个性是注意要充分暴露错误的思维发生过程,在课堂造就民主气氛,充分倾听学生意见,哪怕走点“弯路”,吃点“苦头”;另一方面,则引导学生各抒己见,评判各方面之优劣,最后选出大家公认的最佳方法。还可适当让学生涉及一些一题多解的题目,拓展思维空间,培养学生思维的多

  面性和深刻性。

  例如,高一(下)P26例5求证。能够从一边证到另一边,也能够作差、作商比较,还能够用分析法来证明;再如解不等式。常用的解法是将无理不等式化为有理不等式求解。但还能够利用换元法,将无理不等式化为关于t的一元二次不等式求解。除此之外,亦可利用图象法求解。在同一向角坐标系中作出它们的图像。求两图在x轴上方的交点的横坐标为2,最终得解。要求学生掌握通解通法同时,也要讲究特殊解法。最后练习要增强应用性。例如用函数、不等式、数列、三角、向量等相关知识解实际应用题。引导学生学会建立数学模型,并应用所学知识,研究此数学模型。

  4、作业。鉴于学生现有的知识、潜力水平差异较大,为了使每一位学生都能在自己的“最近发展区”更好地学习数学,得到最好的发展,制定“分层次作业”。即将作业难度和作业量由易到难分成A、B、C三档,由学生根据自身学习状况自主选取,然后在充分尊重学生意见的基础上再进行协调。以后的时间里,根据学生实际学习状况,随时进行调整。

  5、辅导。辅导指两方面,培优和补差。对于数学尖子生,主要培养其自学潜力、独立钻研精神和群众协作潜力。具体做法:成立由三至六名学生组成的讨论组,教师负责为他们介绍高考、竞赛参考书,并定期带给学习资料和咨询、指导。下面着重谈谈补差工作。辅导要鼓励学生多提出问题,对于不能提高的同学要从平时作业及练习考试中发现问题,跟踪到人,跟踪到具体知识。要有计划,有针对性和目的性地辅导,切忌冷饭重抄和无目标性。要及时检查辅导效果,做到学生人人明白自己存在问题(越具体越好),老师对辅导学生状况要了如指掌。对学有困难的同学,要耐心细致辅导,还要注意鼓励学生战胜自己,提高自已的分析和解决问题的潜力。

高三数学教学计划 篇4

  为了备战高考,合理而有效的利用各种资源科学备考,特制定计划如下:

  一、指导思想。

  研究新教材,了解新的信息,更新观念,探求新的教学模式,加强教改力度,注重团结协作,面向全体学生,因材施教,激发学生的数学学习兴趣,培养学生的数学素质,全力促进教学效果的提高。

  二、学生基本情况。

  新的学期里,本人任教高三84、90班两个文科班的数学课,这些学生大部分基础知识薄弱,没有自主学习的习惯,自制能力差,上课注意力不集中,容易走神,课后独立完成作业能力差,懒惰思想严重,因此高三下学期的复习任务相当艰巨。

  三、工作措施。

  1、认真学习《考试说明》,研究高考试题,提高复习课的效率。

  《考试说明》是命题的依据,备考的依据。高考试题是《考试说明》的具体体现。因此要认真研究近年来的考试试题,从而加深对《考试说明》的理解,及时把握高考新动向,理解高考对教学的导向,以利于我们准确地把握教学的重、难点,有针对性地选配例题,优化教学设计,提高我们的复习质量。

  2、教学进度。

  按照高三数学组学年教学计划进行,结合本班实际情况,进行第二轮、第三轮高三总复习,配合学校举行的月考和地区统考,并及时进行教学反思。

  数学复习要稳扎稳打,不要盲目的去做题,每次练习后都必须及时进行反思总结。如:反思总结解题过程的来龙去脉;反思总结此题和哪些题类似或有联系及解决这类问题有何规律可循;反思总结此题还有无其它解法;反思总结做错题的原因:是知识掌握不准确,还是解题方法上的原因,是审题不清还是计算错误等等。

  3、了解学生。

  通过课堂展示、学生交流互动、批改作业、评阅试卷、课堂板书以及课堂上学生情态的变化等途径,深入的了解学生的情况,及时的观察、发现、捕捉有关学生的信息调节教法,让教

  师的教最大程度上服务于学生。对于基础较薄弱的学生,应多鼓励、多指导学法,增强他们学下去的信心和勇气。

  4、精心备课。

  精心的备好每一节课,努力提高课堂效率,平常多去听同科教师的课,向老教师学习经验和好的教学方法,努力提高自己的任教能力。

  5、优化练习。

  提高练习的有效性:知识的巩固,技能的熟练,能力的提高都需要通过适当而有效的练习才能实现。练习题要精选,题量要适度,注意题目的典型性和层次性,以适应不同层次的学生;对练习要全批全改,做好学生的错题统计,对于错的较多的题目,找出错的原因。

  练习的讲评是高三数学教学的一个重要的环节,不该讲的就不讲,该点拨的要点拨,该讲的内容一定要讲透;对于典型问题,要让学生展示讲解,充分暴露学生的思维过程,加强教学的针对性。多做限时练习,注重综合。选取“题型小、方法巧、运用活、覆盖宽”的题目训练学生的应变能力。

  6、注重学习方法、数学方法的指导。

  《考试说明》明确指出要考查数学思想方法, 要加强学科能力的考查。我们在复习中要加强数学思想方法的复习:如转化与化归的思想、函数与方程的思想、分类与整合的思想、数形结合的思想、特殊与一般的思想、或然与必然的思想等。以及配方法、换元法、待定系数法、反证法、数学归纳法、解析法等数学基本方法都要有意识地根据学生学习实际予以复习及落实。

  针对学生的具体情况,进行复习的学法指导,使学生养成良好的学习习惯,提高复习的效率。如:要求学生建立错题本,尤其是考后错题,让学生养成反思的习惯;养成学生善于结合图形直观思维的习惯;养成学生表述规范,按照解答题的必要步骤和书写格式答题的习惯等。

  7、注意心理调节和应试技巧的训练。

  应试的技巧和心理的`训练要从高三的第一节课开始,要贯穿于整个高三的复习课,良好的心理素质是高考成功的一个重要环节。我们数学老师在讲课时尤其是考试中主要锻炼学生的心理素质,我们教育学生要以平常心来对待每一次考试。

  附:第二轮复习进度表:(专题训练综合复习)

  第二阶段的综合复习是在前一阶段基础上的深化与提高,重点在沟通数学各知识体系之间的内在联系,提高综合运用数学知识和方法解决问题的能力。要求做到精选专题,紧扣高考热点和重点,加强针对性训练。

  I、知识专题:

  (1)、不等式、函数与导数:1、不等式的性质、解法和应用;

  2、基本不等式及其应用;

  3、线性规划;

  4、函数的图像和性质;

  5、函数与方程;

  6、导数的概念及其运算;

  7、;利用导数研究函数的性质;

  8、函数与方程、不等式的综合应用;

  9、不等式、函数的实际应用。

  (2)、数列:1、等差数列的通项、求和及其性质;

  2、等比数列的通项、求和及其性质;

  3、等差、等比数列的综合问题;

  4、数列应用。

  (3)、三角函数与平面向量:1、三角函数的化简与求值;

  2、三角函数的图像;

  3、三角函数的性质;

  4、向量的运算和应用;

  5、正、余弦定理的应用;

  6、三角函数、解三角形在生活中的应用 。

  (4)、解析几何:1、两条直线的位置关系;

  2、直线和圆的位置关系;

  3、圆锥曲线的定义和几何性质;

  4、曲线(轨迹)与方程;

  5、定点定值问题;

  6、最值、范围问题;

  7、圆锥曲线的综合问题。

  (5)、立体几何:1、三视图与直观图的转化;

  2、几何体的棱长、表面积和体积;

  3、空间直线、平面平行与垂直的判断、证明;

  4、立体几何中的探究性问题;

  5、展开与折叠问题。

  (6)、概率与统计:1、对抽样方式的理解与应用;

  2、数字特征与统计图表;

  3、用样本估计总体;

  4、古典概型;

  5、几何概型;

  6、变量间的相关关系与回归分析;

  7、独立性检验。

  II、题型专题

  (7)、高考数学选择题中的解题策略:

  1、直接法;

  2、特殊法;

  (特殊值、特殊函数、特殊数列、特殊位置、特殊方程以及特殊图形)

  3、图解法(数形结合);

  4、代入检验法(验证法);

  5、筛选法(排除法、淘汰法);

  6、推理分析法;

  7、估算法。

  (8)、高考数学填空题的解题策略:

  1、常规填空题的解法

  (直接求解法、特殊化求解法、数形结合法、等价转化法、构造法、特征分析法)2、开放性填空解题法

  (多选型填空题、探索性填空题、新定义性填空题、组合型填空题)

  III、阅读专题

  (9)、高考解题中的数学思想

  ①、函数与方程的思想

  1、利用函数与方程思想求解最值、范围问题;

  2、利用函数与方程的转化关系处理方程跟的问题;

  3、函数与方程中的变量转换思想;

  4、函数与方程思想在解决优化问题中的应用。

  ②、化归与转化的思想

  1、以换元法实现化归与转化;

  2、正向思维与逆向思维的转化;

  3、特殊与一般的转化;

  4、命题与等价命题的转化;

  5、函数、方程与不等式之间的转化。

  ③、分类讨论的思想

  1、由数学概念、运算引起的分类讨论;

  2、由图形或图像引起的分类讨论;

  3、根据公式、定理、性质的条件分类讨论。

  ④、数形结合的思想

  1、以数形结合的思想将代数问题化为几何问题;

  2、以数形结合的思想将几何问题化为代数问题;

  3、以向量为工具实现数形结合的最佳优化。

高三数学教学计划 篇5

  3、改变课型,注意实效

  结合学校创建,开展三名、四课活动,有针对性地加强课堂教学内容方法、方式的改革,充分发挥学科指导组的作用,开展多种形式的课型,研究

  课型。

  如高一新教材的研究课、高二教学的概念引入课、高三专题复习的研究课等形式上有概念的引入课,例习题课、讲解课、试卷评讲课、专题复习

  课、多媒体应用课等,以此为纽带带动各组的教研教改活动的开展,加强听课评课的监督与指导,改进教学方法,运用现代教学手段,提升教育理

  念,明确教育目的。

  提高教学质量,同时积极组织本组教师参加校级、区级、市级、省级的各类公开课,优质课评比、教案评比、五项技能比赛等,以此促进提高教师

  的综合素质,丰富教育教学经验。

  4、加强管理,落实常规

  根据教育教学的需要,结合学校要求,加强备、教、改、导、考、评、析的教学常规管理与检查。以备课组长、学科指导组为主体,对每位教师的.

  教学情况进行逐一检查、监督、及时反馈、具体指导,对备课组的教学进度的安排,集体备课的落实,单元检测的组织等工作进行检查,使本组教

  学工作有条不紊,注重实效,各项教学工作全面提高。

  同时,根据学校的总体安排,结合学校的创建实际,积极参加学校组织的各项教研、教改、比赛等活动,认真准备,争取取得最佳的成绩,为参加上一级组织

  的相应的比赛,推荐最佳人选,为学校和数学组获得更大的荣誉.

  5、勤于总结,深化提高

  通过理论学习,常规培训,鼓励引导教师,结合教学实际,认真总结,积极思考,撰写有关方面的论文,如数学素质教育、创新教育的理论、探讨

  和实践探索、数学课程标准讨论、典型例题评析、高中新教材教学、教学艺术、教学访谈、教学活动课教学等内容。

  以此提高教师的理论素养和实践能力,真正提高教育教学质量。

高三数学教学计划 篇6

  【内容分析】

  本节课是《普通高中课程标准实验教科书·数学5》(人教A版)第二章数列第二节等差数列第一课时。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

  【教学目标】

  1.知识目标:理解等差数列定义,掌握等差数列的通项公式。

  2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力。

  3.情感目标:通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣。

  【教学重点】

  ①等差数列的概念;②等差数列的通项公式的推导过程及应用。

  【教学难点】

  ①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程。

  【学情分析】

  我所教学的学生是我校高一(10)班的学生(平行班学生),经过快一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

  【设计思路】

  1.教法

  ①诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

  ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

  ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

  2.学法

  引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

  用多种方法对等差数列的通项公式进行推导。

  在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

  【教学过程】

  教学内容问题预设师生互动预设意图

  创设情景,提出问题

  问题提出:

  1。从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

  2。水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2。5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

  3。我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息。按照单利计算本利和的公式是:本利和=本金×(1+利率×存期)。按活期存入10 000元钱,年利率是0。72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

  教师:以上三个问题中的数蕴涵着三列数。

  学生:

  1:0,5,10,15,20,25,…。

  2:18,15。5,13,10。5,8,5。5。

  3:10072,10144,10216,10288,10360。

  从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型。通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的'归纳能力。

  观察归纳,形成定义

  ①0,5,10,15,20,25,…。

  ②18,15。5,13,10。5,8,5。5。

  ③10072,10144,10216,10288,10360。

  思考1上述数列有什么共同特点?

  思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

  思考3你能将上述的文字语言转换成数学符号语言吗?

  教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念。

  学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定。

  教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义。

  通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达。

  举一反三,理解定义

  练一练:判定下列数列是否为等差数列?若是,指出公差d。

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,—1,—2;

  (4)4,7,10,13,16。

  思考4设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

  教师出示题目,学生思考回答。教师订正并强调求公差应注意的问题。

  注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 。

  强化学生对等差数列“等差”特征的理解和应用。

  思考5已知等差数列:

  8,5,2,…,求第200项?

  思考6已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

  教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示。根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会递推思想;让学生初步尝试处理数列问题的常用方法。

  引导学生观察、归纳、猜想,培养学生合理的推理能力。学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识。鼓励学生自主解答,培养学生运算能力。

  理解通项,简单应用

  变1判断—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?

  变2在等差数列{an}中,已知a5=10,a12=31, 求a1,d和an。

  变3某市出租车的计价标准为1。2元/km,起步价为10元,即最初的4km(不含4千米)计费10元。如果某人乘坐该市的出租车去往14km处的目的地,且一路畅通,等候时间为0,需要支付多少车费?

  教师:给出问题,让学生自己操练,教师巡视学生答题情况。

  学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式。

  主要是熟悉公式,使学生从中体会公式与方程之间的联系。初步认识“基本量法”求解等差数列问题。

  课堂小结,课外作业

  1。一个定义:

  等差数列的定义

  2。一个公式:

  等差数列的通项公式

  3。二个应用:

  定义和通项公式的应用

  教师:让学生思考整理,找几个代表发言,最后教师给出小结内容,并适当解析。

  教师展示作业:

  P39练习:2,3。

  P40习题2。2A组:1,4。

  引导学生去联想这一概念所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念。

  【设计反思】

  1。本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣。在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力。

  2。本课各环节的设计环环相扣、简洁明了、重点突出,引导分析细致、到位、适度。如:判断某数列是否成等差数列,这是促进概念理解的好素材;此外,用方程的思想指导等差数列基本量的运算等等。学生在经历过程中,加深了对概念的理解和巩固。

  3。本节课教学体现了课堂教学从“灌输式”到“引导发现式”的转变,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率。

  4。本人认为在概念教学中多花一些时间是值得的,因为只有理解掌握了概念,才能更好地帮助学生落实“双基”,更好地帮助学生认识数学,认识数学的思想和本质,进一步地发展学生的思维,提高学生的解题能力。

高三数学教学计划 篇7

  一、考情分析

  XX年是我省实行新课程改革的第一届高三毕业生,高考命题是以《考试说明》为依据的,高三数学复习是要以《考试说明》为指导的,但是,《考试说明》可能要等到下一学期中途才能出台。高三复习工作是等不得的。9月4日下午在合肥市教研室主持召开的高三数学复习研讨会上,也没能有一个明确的复习要求。这就要求我们各位授课教师结合08届周边省份如山东、江苏、海南、上海等省市高考试题、对照题型示例,仔细揣摩,去研究“课程标准”中的各项要求的具体落脚点,把握试题改革的新趋势。为了使本届高三数学的复习工作更加有效,在内容取舍上,应以考试内容为准,不随意扩充、拓宽和加深;注意各知识点的难度控制。根据学科的特点,结合本校数学教学的实际情况制定以下复习计划。

  二、学情分析

  我今年教授三个班的.数学教学,原来带两个理科班:(8)班和(9)班,进入高三以后,又加了一个文科班:(3)班;本届学生是第一届课改生,在高一、高二阶段,无论是教师或学生,思想认识都不到位,学习抓得不紧,尤其课时不足,只重进度不重效果,大部分学生的基础知识、基本方法掌握不好,学习数学的信心和兴趣不足。并且,学生的“知识回生”太快,有明显优势的学生较少,主动学习数学的习惯不强.还有不少数学是“缺腿”的优生。

  经过与同组的其他老师商讨后,我打算分三个阶段来完成09届高三数学的复习工作。

  首先,理科班在暑期补课期间到九月末完成高三选修2-3及选修2-2第二章定积分部分、合情推理中的数学归纳法等内容的教学。然后进入高三第一轮复习,文科班同学九月份开学后直接进入高三第一轮复习:

  第一轮从XX年10月中旬开始至XX年3月底或4月上旬结束

  第二轮从XX年3月底或4月上旬至5月上、中旬结束

  第三轮从XX年5月中旬至5月底结束。

  根据往届学生复习过程中出现的问题,本届学生可能会出现同样的问题

  1、只跟不走

  部分学生认为高考复习就是把高中的数学课的内容再重新上一遍,所以,同样只要上课听牢,作业做好就可以了。虽然复习课堂上听的很认真,作业做的也很认真,但从来没有去想听了什么,做了什么,自然提高不大,碰到新情景的问题时有解决不了。我们认为主动是学习成绩提高的保证。外因可起重要作用,但它必须通过内因才能起作用。只有学生主动起来,对每一堂课都有一种需求的心态走进来,才有可能真正取得提高,那么如何引导学生在复习中不只是跟在后面,而是走到前面呢?我的对策是在调动学生学习积极性提高他们的学习兴趣的同时,帮助他们养成在课前几分钟自觉地对本堂课的要点进行梳理的习惯,或者把本堂课的要点梳理设计成练习,课前发给他们,或者利用多媒体投影仪展示,让他们去回顾、思考,可以说课前对基础知识的梳理与强化是学习的生命。

  2、只看不写

  一些基础相对较好或思维较快但比较粗糙的同学,往往眼高手低,喜欢看看题目,稍微动动笔,答案一写了事。尤其我们(9)班学生多数有这个毛病。加强分析思考,这本身是件好事,但过了头,就成了坏事。平时解题只是写个简单答案,不注意解题步骤和过程的规范,导致的结果就是一些细节地方考虑不周全,考试中扣分过多,甚至碰到很熟悉的题目,考试中没了思路。所以我们的对策是同学们平时的练习和作业中必须要有完整的书写步骤,提高表达水平。高考中,只有把你的思维通过解答完整反映到卷面上,阅卷老师才有给满分的可能。

  3、只练不想

  只埋头拉车,不抬头看路。高考复习资料五花八门,这些同学在复习中埋头苦练,拼命做题,往往是事倍功半。我们觉得在复习中应边练边想,必要的训练是必不可少的,不要搞题海战术,而要强化自我总结。学习数学离不开做题,但要精,并在做题后要认真反思、分析,总结出一些问题的规律,并找出自己存在的问题,真正掌握解题的思维方式,内化为自己的能力。努力争取达到做一题,得一法,会一类,通一片的收获。

  三、指导思想

  抓基础知识和基本技能,抓数学的通性通法,即教材与课程目标中要求我们把握的数学对象的基本性质,处理数学问题基本的、常用的数学思想方法,如归纳、演绎、分析、综合、分类讨论、数形结合等。提高学生的思维品质,以不变应万变,使数学学科的复习更加高效优质。

  研究《课程标准》和《教材》,既要关心《课程标准》中调整的内容及变化的要求,又要重视今年数学不同版本《考试说明》的比较。结合上一年的新课改区高考数学评价报告,对《课程标准》进行横向和纵向的分析,探求命题的变化规律。

高三数学教学计划 篇8

  一、指导思想

  依托20xx届取得的辉煌成绩,实现啸中学校发展蓝图,高三数学组必须团结一致,群策群力抓好高三数学复习,备战20xx高考,切实落实“关注差异,开发潜能,多元发展”的教学方针。

  二、复习要求

  1. 资源共享提升效率

  统一使用《优化方案》,合理运用书利华网站上的人教版高三复习课件,适当补充其它课件,实现资源共享,提高备课效率。

  2. 立足单元形成网络

  作好单元复习,这是一个将数学知识由“点——线——网”的过程,将分散的知识串成面、串成体,形成知识体系的网络化,将问题归类,进行知识迁移和联想、 分解与组合,一题多变、一题多解,举一反三,触类旁通。不仅重视单元内综合,更注重学科内的综合,关注在知识的交会点处设计问题。

  3. 注重方法培养能力

  模拟题要定时定量训练,把训练当考试,积累经验、锤炼心理。选择题的训练立足基础,提高准确性,注重方法灵活性。填空题的训练注重训练学生准确、严谨、 全面、灵活运用知识的能力和基本运算能力,注重书写结果的规范性。解答题重视审题过程,思维的发生、发展过程。在问题的分析、思路发展过程中运用数学思想 方法进行思维的导向,在思维过程中点明数学思想方法在解题思路发现过程中所起的'重点作用。

  4. 注重学生卷面表达的训练。

  高考要获得好分数,除了具有较高的数学功底外,还要避免出现失误失分。一方面要通过试题训练使学生减少、避免马虎、失误丢分,还要强调学生的书面表达,训练学生答卷时做到字迹工整、格式规范、推证合理、详略适当,做到会的题目不丢分,不会做的题目也争取得部分步骤分。

  5.做好试卷评析工作。

  学生将常常面临模拟训练,教师的讲评试卷要分析题目考的哪些知识点、需要哪几种能力、体现哪些数学方法,使学生体会出题者意图。讲评中还要不断转换条件,进行变式训练,达到举一反三,触类旁通的训练,不能只满足于就题论题,要注重探求解题规律,提高点评的质量和效益。

  三、强化训练

  1.不依靠题海取胜,注重题目的质量和处理水平

  当训练的题目达到一定的数量后,决定复习效果的关键性因素就不再是题目的数量,而在于题目的质量和处理水平。

  ①对立意新颖、结构精巧的新题予以足够的重视,要保证有相当数量的这类题目,但也不一味排斥一些典型的所谓“新题”、“热题”。传统的好题,包括课本上的一些例、习题应成为保留节目。陈题新解、熟题重温可使学生获得新的感受和乐趣。

  ②控制题目的难度,在“稳”、“实”上狠下功夫,那些只有运用“特技”才能解决的“偏、怪、奇”的题,坚决摒弃。

  2.突破一个“老大难”问题。

  “会而不对,对而不全” 是一个老大难问题。“会而不对”是拿到一道题目不是束手无策,而是在正确的思路上,或考虑不周,或推理不严,或书写不准,最后答案是错的。“ 对而不全” 是思想大体正确,最终结论也出来了,但丢三落四,或缺欠重大步骤,中间某一步逻辑点过不去;或遗漏某一极端情况,讨论不够完备;或是潜在假设;或是以偏概全等,这个老大难问题应该认真重视,并综合治理加以解决。

  3.注重应试技巧的培养。

  (1)速度。考试的时间紧,是争分夺秒,复习一定要有速度意识,加强速度训练,用时多即使对了也是“潜在丢分”,要避免“小题大做”。

  (2)计算。数学高考历来重视运算能力,虽近年试题计算量略有降低,但并未削弱对计算能力的要求。运算要熟练、准确,运算要简捷、迅速,运算要与推理相结合,要合理。

  (3)表达。在以中低档题为主体的高考中,获得正确的思路相对容易,如何准确而规范地表达就变得重要了,因此,复习中要有书写要求,模拟考试后要求交“满分卷”。

  四、教学教研

  1.定时定点参加组内教研活动,严格实行签到

  2.加强组内学习、观摩、听课、实现资源共享

  3.加强复习课、习题课、试卷分析课型的探讨,形成高效课模

  4.探讨培优补差措施,重视拔尖生、踩线生工作

  5.注重学生的心理辅导和心理调节。

  五、复习进度

  暑假:理科完成新课内容,集合与简易逻辑、函数、三角函数

  第一周:平面向量

  第二、三周:数列

  第四周:数列

  第五周:不等式

  第六周:平面解析几何

  第七周:平面解析几何

  第八周:立体几何

  第九周:立体几何

  第十周:计数原理、概率

  第十一周:随机变量及其分布

  第十二、三周:机动安排、复习迎考

  第十四、五周:机动安排、复习迎考

  第十六、七周:机动安排、复习迎考

  第十八、九周:机动安排、复习迎考

  六、其它

  1. 单元、月考、期中、期末考试,由学校或备课组统一命制试题。

  2. 应掌握所教班级的高考目标,制定具体的培优补差措施。

  3. 按照文理、班级差异分版块定期交流教学、学生培养等信息。

  4. 对班级目标学生每周一次作业面批。

高三数学教学计划 篇9

  一、学生基本情况:

  175班共有学生66人,176班共有学生60人。学生基本属于知识型,相当多的同学对基础知识掌握较差,学习习惯不太好,两班学习数学的气氛不太浓,学习不够刻苦,各班都有少数尖子生,但是每个班两极分化非常严重,差生面特别广,很多学生从基础知识到学习能力都有待培养,辅差任务非常重,目前形势非常严峻。

  二、高考要求

  1、高考对数学的考查以知识为载体,着重考察学生的逻辑思维能力、运算能力、空间想象能力、运用数学思想方法分析问题解决问题的能力。

  2、重视数学思想方法的考查,重点考查转化思想、数形结合思想、分类讨论思想、函数与方程思想。高考数学实体的设计是以考查数学思想为主线,在知识的交汇点设计试题。

  3、高考试题注重区分度,同一试题,大多没有繁杂的运算,且解法较多,不同层次的学生有不同的解法。

  4、注重应用题的考查,20xx年文科试题应用有3道题,共28分。

  5、注重学生创新意识的考查,注重学生创造能力的考查。

  三、教学措施

  1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。

  2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。教学基本模式为:

  基础练习典型例题作业课后检查

  (1)基础练习:一般5道题,主要复习基础知识,基本方法。要求所有的学生都过关,所有的学生都能做完。

  (2)典型例题:一般4道题,例1为基础题,要直接运用课前练习的基础知识、基本方法,由学生上台演练。例2思路要广,让有生能想到多种方法,让中等生能想到12种方法,让中下生让能想到1种方法。例3题目要新,能转化为前面的典型类型求解。例4为综合题,培养学生运用数学思想方法分析问题解决问题的能力。

  (3)作业:本节课的基础问题,典型问题及下一节课的预习题。

  (4)课后检查;重点检查改错本及复习资料上的作业。

  3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。

  4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。

  5、发挥集体的力量,共同培养尖子学生。

  6、加强文科数学教学辅导的力度,坚持每周有针对性地集体辅导一次,建议学校文科数学每周多开一节课(即每周7节)。

  四、教学进度详细安排:

  1、函数(共11课时)(8月9日结束)

  (1)函数的单调性(2课时)

  (2)函数的图象(2课时)

  (3)二次函数(2课时)

  (4)函数的奇偶性(1课时)

  (5)函数章考(4课时)

  2、三角函数(共30课时)(9月15日结束)

  (1)任意角的三角函数(1)

  (2)同角三角函数的基本关系(1)

  (3)诱导公式(1)

  (4)三角函数的图象(2)

  (5)三角函数的定义域、值域和最值(2)

  (6)三角函数的奇偶性、单调性(1)

  (7)三角函数的周期性(1)

  (8)两角和差的正、余弦公式(1)

  (9)倍角公式、万能公式(2)

  (10)和积互化公式(1)

  (11)三角函数的化简与求值(3)

  (12)三角恒等式的证明(1)

  (13)条件恒等式的证明(1)

  (14)三角形的求值与证明(3)

  (15)解斜三角形(2)

  (16)三角不等式(1)

  (17)三角函数的最值(2)

  (18)反三角函数的概念、图像及性质(1)

  (19)反三角函数的运算(2)

  (20)最简单的三角方程(1)

  (21)单元考试(4)

  3、不等式(共24课时)(10月13日)

  (1)不等式的概念与性质(1课时)

  (2)不等式的`证明(比较法)(1课时)

  (3)不等式的证明(分析法、综合法)(1课时)

  (4)应用均值不等式证明不等式(2课时)

  (5)不等式的证明(反证法、数学归纳法)(3课时)

  (6)一元一次不等式、一元二次不等式的解法(1课时)

  (7)分式不等式的解法(1课时)

  (8)无理不等式的解法(1课时)

  (9)含绝对值不等式的解法(1课时)

  (10)指对不等式的解法(2课时)

  (11)含参不等式的解法(3课时)

  (12)均值不等式的应用(2)

  (13)应用不等式求范围(2)

  (14)章考(4课时)

  (15)月考及讲评(4天)

  4、数列、极限、数学归纳法(共20课时)(11月13日)

  (1)数列的通项(2课时)

  (2)等差数列(2课时)

  (3)等比数列(2课时)

  (4)综合运用(2课时)

  (5)数列的求和(3课时)

  (6)数列的极限(1课时)

  (7)数学归纳法(4课时)

  (8)归纳、猜想、证明(1课时)

  (9)章考(3课时)

  (10)月考及讲评(4天)

  5、复数(共15课时)(11月27日)

  (1)复数的概念(2课时)

  (2)复数的代数形式及运算(2课时)

  (3)复数的三角形式(1课时)

  (4)复数的三角形式的运算(2课时)

  (5)复数的加减法的几何意义(1课时)

  (6)复数的乘除法的几何意义(2课时)

  (7)复数集上的方程(2课时)

  (8)复数集上的方程(1课时)

  (9)章考(2课时)

  6、排列、组合、二项式定理(共11课时)(12月1日)

  (1)两个基本原理(1课时)

  (2)排列、组合数公式(1)

  (3)排列应用题(1)

  (4)组合应用题(1)

  (5)排列、组合综合应用题(2)

  (6)二项式定理(3)

  (7)章考(2课时)

  (8)月考及讲评(4天)

  7、直线与平面(共20课时)(12月24日)

  (1)平面及其基本性质(1课时)

  (2)空间的两条直线(1课时)

  (3)直线与平面(1课时)

  (4)平面与平面(1课时)

  (5)三垂线定理及逆定理(2课时)

  (6)平行间的转化(2课时)

  (7)垂直间的转化(2课时)

  (8)空间角(3课时)

  (9)空间距离(2课时)

  (10)章考(3课时)

  (11)月考及讲评(4天)

  8、多面体与旋转体(共7课时)(12月31日)

  (1)柱体(1课时)

  (2)锥体(1课时)

  (3)台体(1课时)

  (4)球(1课时)

  (5)侧面张开图(1课时)

  (6)折叠问题(1课时)

  (7)体积问题(1课时)

  (8)自测

  9、直线与圆(共10课时)(1月12日)

  (1)向线段与定比分点(1)

  (2)直线方程的几种形式(2)

  (3)两直线的位置关系(1)

  (4)对称为题(1)

  (5)圆的方程(1)

  (6)直线与圆的位置关系(2)

  (7)章考(2课时)

  (8)月考及讲评(4天)

  10、圆锥曲线(共21课时)(2月4日)

  (1)充要条件(1)

  (2)椭圆(1)

  (3)双曲线(1)

  (4)抛物线(1)

  (5)坐标平移(2)

  (6)弦问题(4)

  (7)轨迹的求法(4)

  (8)最值问题(2)

  (9)取值范围问题(2)

  (10)章考(3课时)

  11、参数方程、极坐标(共5课时)(2月10日)

  (1)直线的参数方程及应用(2)

  (2)圆锥曲线的参数方程(1)

  (3)直线与圆的极坐标方程(2)

  五、周练安排

  1、出题安排

  (1)第2、5、8、11、14、17、20周

  (2)第3、6、9、12、15、18、21周

  (3)第4、7、10、13、16、19、22周

  2、注意事项

  每周星期一以前出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。

  六、过关题、典型题

  1、出题安排

  (1)三角函数

  (2)不等式

  (3)数列

  (4)复数、排列组合、二项式定理

  (5)立体几何

  (6)解析几何

  2、注意事项

  每章结束以前一周出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。

  七、章考命题负责人

  1、出题安排

  (1)三角函数

  (2)不等式

  (3)数列(4)复数、排列组合、二项式定理

  (5)立体几何

  (6)解析几何

  2、注意事项

  每次考前出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。

  八、月考命题负责人

  1、出题安排

  (1)第一次月考

  (2)第二次月考

  (3)第三次月考

  (4)第四次月考

  (5)第五次月考

  2、每次月考前一周出好试题,交备课组讨论,负责定稿交好试卷。

Copyright©2003-2024xianxue.com版权所有