当前位置:贤学网>范文>教学计划> 高一数学教学计划

高一数学教学计划

时间:2023-10-09 07:17:27 教学计划 我要投稿

高一数学教学计划优选(13篇)

  人生天地之间,若白驹过隙,忽然而已,又将迎来新的工作,新的挑战,不妨坐下来好好写写计划吧。你所接触过的计划都是什么样子的呢?以下是小编收集整理的高一数学教学计划,希望能够帮助到大家。

高一数学教学计划优选(13篇)

高一数学教学计划1

  一、指导思想:

  在新课程改革的教学理念下,以发展教育的观念为指引,以学校和教导处的工作计划为指南,改变教学观念,改进教学方法,更新教学手段,提高教学效率,提高学生的阅读能力、解题能力,促进学生学习态度、学习方式的转变,培养学生自主学习、积极探究、乐于合作的精神,注重学生数学素养的提高,关注学生的思想情感和交流,培养学生的创新思维和创造能力,为学生的可持续发展奠定基础。新课标理念下的政治教学活动应该不同于传统的课堂教学,改变教师的教法和学生的学法是在教学活动中体现最新教学理念的关键。“导学案”应课堂教学改革与传统教学模式的矛盾而生,它既可以将学生自主学习引入正轨,又将学生可以自主探究理解完成的知识点与题目在课下解决,这样,课堂上教师就有足够的时间与学生共同研究解决本节课的重点与难点,从而提高了课堂效率。我们应该认识到改革是教学的生命,课程改革与课堂教学改革是一个不断发展、不断探索的过程。在这个过程中,要求教师能够正确、深刻地理解新课程理念,辩证地分析和处理各种在课程改革中产生的观念和做法,树立正确的育人理念,开拓进取,不断寻求新的有效的方法促进学生的全面发展。二、教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》必修

  1、必修

  2,根据必修1.2设计的导学案。它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性,辩证地分析和处理各种在课程改革中产生的观念和做法,树立正确的育人理念,开拓进取,不断寻求新的有效的方法促进学生的全面发展。

  三、学情分析:

  本学期任教高一(35.36)班的数学,(35.36)班是平衡班,部分学生学习数学的热情较高涨,比较自觉,能认真完成作业,但数学层次并不相同,部分同学基础薄弱,缺乏学习数学的方法。

  四、教学策略、教研活动:

  1、落实提高课堂效率,导学案的设计目的是为了将学生的导学案与教师的集体备课设计为一体,第一、课前预习。教师设计此部分内容之前必须针对本课

  题的三维目标与考纲认真备课,列出本节课的知识要点,对于重难点做特殊标记,并针对预习提纲给出的内容设计预习检测题,预习检测题难度不易过高,与本课题的重难点相关的知识点有选择性的录入此处,让学生在做此部分时不能感觉太简单了也不能感觉无从下手,要有一部分题目让他能够通过讨论探究完成。第二,探究活动。第三、课堂检测。此处设置的题目难度深度一定比预习检测部分要更难更深。此部分不要求所有的学生都在课前做。从此处开始分“才”完成,有能力的同学可以提前尝试着做,做题慢的同学可以先不必看,学生按照自己的情况自行决定。第四,拓展延伸。这里出现的题目属于拔高题,一般很少有学生在课前能够做对,所以此处也不要求学生课前做,当然不排除有的同学想要挑战一下,这是提倡并且大力表扬的。第五,反思总结。学生利用这部分一方面可以小结本节课的内容,另一方面可以对自己本课题从预习探究到课堂探究各个环节进行反思,便于日后改进。上课时要明确重点、难点,重点要突出,难点要分散,并且难点要解决好。课堂讲新课的时间一定要控制在20分钟之内,最好能在10分钟之内解决问题,多给时间学生练习或进行与学习有关的活动。

  2、做到课后教学反思

  上完课之后需要思考三个问题:我这节课上得如何有没有要纠正与改进的?有谁的课比我还优秀?怎样上这节课更好、最好?并在学案、备课笔记上做好记录,为以后的教育教学提供参考。

  3、落实好备课电子化,为加快对试验课的.理解和掌握,积极探索教改进程,建立备课组资料库,备课组成员要积极借助网络信息收集和筛选资料存库,发挥集体智慧,在备课组会议上整理,及时应用到具体教学中。注重学案导学,编好用好导学案。

  4、积极听有经验的教师的课,认真改进课堂教学上的薄弱环节。注重研究教师如何讲、注重研究学生如何学,积极推进新课改,提高课堂效率。

  五、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生交流等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯。

  3、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  4、扎实基础的同时重视数学应用意识及应用能力的培养。

  5、落实抓好平时的一周一限时训练,一周一综合,注重知识的渗透

  6、落实竞赛辅导:主要利用下午第三节时间,一个星期进行一至两次辅导。

高一数学教学计划2

  一、教材依据

  本节课是北师大版数学(必修2)第二章《解析几何初步》第一节《1.2直线的方程》第一部分《直线方程的点斜式》内容。

  二、教材分析

  直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式

  、两点式都是由点斜式推出的。从初中代数中的一次函数引入,自然过渡到本节课想要解决的问题求直线方程问题。在引入,过程中要让学生弄清

  直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。

  在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。

  三、教学目标

  知识与技能:

  (1)理解直线方程的点斜式、斜截式的形式特点和适用范围;

  (2)能正确利用直线的点斜式、斜截式公式求直线方程。

  (3)体会直线的斜截式方程与一次函数的关系。

  过程与方法:在已知直角坐标系内确定一条直线的几何要素直线上的.一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生

  通过对比理解截距与距离的区别。

  情态与价值观:通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化

  等观点,使学生能用联系的观点看问题。

  四、教学重点

  重点:直线的点斜式方程和斜截式方程。

  五、教学难点

  难点:直线的点斜式方程和斜截式方程的应用。

  要点:运用数形结合的思想方法,帮助学生分析描述几何图形。

  六、教学准备

  1.教学方法的选择:启发、引导、讨论.

  创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性

  学习活动。

  2.通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的思想;学生要学会用数形结合的方法建立起代数问题与几何问题

  间的密切联系。为使学生积极参与课堂学习,我主要指导了以下的学习方法:

  ①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。

  ②.分组讨论。

高一数学教学计划3

  本学期我担任高一(5)、(16)班的数学教学工作,本学期的教学工作计划如下。

  一、指导思想:

  (1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

  (2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的`方法进行推理,并正确地、有条理地表达推理过程的能力。

  (3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

  (4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  (5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

  (6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

  二、学情分析及相关措施:

  高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:

  (1)注意研究学生,做好初、高中学习方法的衔接工作。

  (2)集中精力打好基础,分项突破难点。所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。。

  (3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

  (4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

  (5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

  (6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

高一数学教学计划4

  一.指导思想:

  (1)随着素质教育的深入展开,《新课程标准》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

  (2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

  (3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

  (4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  (5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

  (6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的'学习做好准备。

  二.学情分析:

  我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:

  1、进一步学习条件不具备.高中数学与初中数学相比,知识的深度、

  广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。

  2、被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

  3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。

  4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。

  5、不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”。此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和能力,对数学思想方法重视不够或掌握情况不好,缺乏将实际问题转化为数学问题的能力,缺乏准确运用数学语言来分析问题和表达思想的能力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高

  三、教学目标与要求

  必修1,主要涉及两章内容:

  第一章:集合

  通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。

  1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;

  2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;

  3.理解补集的含义,会求在给定集合中某个集合的补集;

  4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;

  5.渗透数形结合、分类讨论等数学思想方法;

  6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。

  第二章:函数的概念与基本初等函数Ⅰ

  教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。

  1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;

  2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;

  第三章:函数的应用

  函数的应用是学习函数的一个重要方面,学生学习函数的应用,目的就

  是利用已有的函数知识分析问题和解决问题.通过函数的应用,对完善函数思想,激发学生应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助。

  1.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;

  2.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。

  必修4:主要涉及三章内容:

  第一章:三角函数

  通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。

  1.了解任意角的概念和弧度制;

  2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;

  3.了解三角函数的周期性;

  4.掌握三角函数的图像与性质。

  第二章:平面向量

  在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

  1.理解平面向量的概念及其表示;

  2.掌握平面向量的加法、减法和向量数乘的运算;

  3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;

  4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。

  第三章:三角恒等变换

  通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦

高一数学教学计划5

  一、指导思想

  准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

  二、教学建议

  1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

  2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

  3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

  4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的'功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

  5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。

  三、教学内容

  第一章集合与函数概念

  1.通过实例,了解集合的含义,体会元素与集合的属于关系。

  2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

  3.理解集合之间包含与相等的含义,能识别给定集合的子集。

  4.在具体情境中,了解全集与空集的含义。

  5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

  6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

  7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

  8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

  9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

  10.通过具体实例,了解简单的分段函数,并能简单应用。

  11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

  12.学会运用函数图象理解和研究函数的性质。

  课时分配(14课时)

  1.1.1集合的含义与表示约1课时9月1日1.1.2集合间的基本关系约1课时9月4日| | 9月12日1.1.3集合的基本运算约2课时

  小结与复习约1课时

  1.2.1函数的概念约2课时

  1.2.2函数的表示法约2课时9月13日| | 9月25日1.3.1单调性与最大(小)值约2课时

  1.3.2奇偶性约1课时

  小结与复习约2课时

  第二章基本初等函数(I)

  1.通过具体实例,了解指数函数模型的实际背景。

  2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

  3。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

  4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。

  5。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。

  6。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。

  7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。

  课时分配(15课时)

  2.1.1引言、指数与指数幂的运算约3课时9月27日30日2.1.2指数函数及其性质约3课时10月8日10日2.2.1对数与对数运算约3课时10月11日14日2.2.2对数函数及其性质约3课时10月15日18日2.3幂函数约1课时10月19日24日

  小结约2课时

  第三章函数的应用

  1。结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

  根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

  2。利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

  3。收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

  4。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。

  课时分配(8课时)

  3.1.1方程的根与函数的零点约1课时10月25日3.1.2用二分法求方程的近似解约2课时10月26日27日3.2.1几类不同增长的函数模型约2课时10月30日| 11月3日3.2.2函数模型的应用实例约2课时

  小结约1课时

  考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。

高一数学教学计划6

  一、上学期教学回顾

  高一共四个教学班,共计160余人。杨文国带高一(一)班,高一(二)班;张忠杰带高一(三)班和高一(四)班。其中各班期末八校联考的成绩分别为:50.6分,32.8分,27.2分,34.5分,总平36.9分。学期中途因张忠杰离开学校导致频繁更换老师,(三)班、(四)班的成绩因而受到影响。期末由王山任(三)班、(四)班的数学老师。

  上学期工作在学生学习的落实环节上做得不太扎实,这将是本学期重点改进的地方。

  二、本学期的措施及打算

  1.一周学习早知道。明确目标更能确定努力的方向。为了让学生学习更有目的性,有效性和积极性,每周第一节课给出一周的教学进度,学习目标和过关要求。不仅老师要做到对所教内容清楚明了,也要让学生对所学内容做到每周学习目标清晰化。

  2.落实每周测试过关制。周测内容与一周学习目标及一周的讲授内容紧密相连。未尽力而又没有过关的学生将按事先说明的措施给予处罚。以便让学生重视课堂学习,重视平时作业,重视一周的学习过程。做到让学生每周学习过程精细化。

  3.根据学生学力状况进行分层次的培优补差。

  三、教学进度安排

  周次,学习内容

  目标要求

  1.必修

  4第一章三角函数:第1至3节

  周期,角的推广及表示,弧度制及互化

  2.军训

  3.第

  4节:正弦函数

  单位圆,正弦函数定义,象限符号,诱导公式,五点法画图像,图像及性质。

  4.第

  5节:余弦函数,第6节:正切函数

  余弦函数正切函数定义,象限符号,诱导公式,图像及性质

  5.第

  7节:xAsiny的图像,第8节:同角的基本关系。

  图像变换规律,同角三角函数的基本关系及其运用。章节复习,章节过关测试。

  6.第二章:平面向量:第

  1节至第2节

  向量,有向线段,向量的长及相等、平行、共线、单位向量等概念,向量的加减法运算

  7.第

  3节至第5节

  数乘向量,基本定理,向量运算的巩固训练,平面向量的坐标表示及运算。数量积的.应用。

  8.第

  5节至第7节

  数量积的应用及坐标表示,向量应用举例。习题课,章节复习,章节过关测试。

  9.第三章:三角恒等变换:第

  1节至第2节

  两角和差的公式得推导,记忆及灵活运用,二倍角公式得来源及运用。期中复习。

  10.期中考试

  期中复习,期中考试。

  11.第三章第

  3节:三角函数的简单应用

  试卷讲评改错,简单应用,三角恒等变换的综合习题课,练习,章节复习,必修4基本测试。

  12.五一长假

  13.必修

  3第一章:统计。第1节至第5节

  统计的程序,统计图,统计方案设计,普查与抽样,抽样方法,分层抽样与系统抽样,花统计图表及读统计图表,数字特征:平均数,中位数,众数,级差,方差的意义及计算分析,14.第

  6节至第9节

  样本对总本的估计及相应的数字特征的计算分析,统计实践活动,变量的相关性及例题分析,最小二乘估计。章节复习,章节过关测试。

  15.第二章:算法初步:第

  1节至第3节

  基本思想,基本结构及设计,排序问题。

  16.第

  4节:几种基本语句

  条件语句,循环语句,复习三角函数的基本内容,章节复习,三角函数与算法初步过关测试。

  17.第三章:概率:第

  1节至第2节

  频率,概率,古典概率,概率计算公式。

  18.第

  2节至第3节

  建概率模型,互斥事件,习题课节复习,章节过关测试。

  19.期末复习

  20.期末复习,期末考试

高一数学教学计划7

  一、教学内容

  本学期将完成数学必修1和数学必修4 (人教A版)两本教材的的学习,教学辅助材料有《同步金太阳导学》。

  二、教学目标与要求

  认真深入地学习《新课程标准》,研读教材。明确教学目的,把握教学目标,把准教学标高。注意到新教材的特点亲和力问题性思想性联系性,注意对基本概念的理解、基本规律的掌握、基本方法的应用上多下功夫,转变教学观念,螺旋上升地安排核心数学概念和重要数学思想,加强数学思想方法的渗透与概括。在课堂教学中要以学生为主,注重师生互动,对基本的知识点要落实到位,新教材对教学中有疑问的地方要在备课组中多加讨论和研究,特别是有关概念课的教学,一定要讲清概念的发生、发展、内涵、外延,不要模棱两可。

  1.处理好初高中衔接问题。初中内容的不适当删减、降低要求,导致学生双基无法达到高中教学要求;高中不顾学生的基础,任意拔高教学要求,繁琐的、高难度的运算充斥课堂。对初中没学而高中又要求掌握的内容(具体内容见附录)。

  2.准确把握教学要求,循序渐进地教学。不搞一步到位删减的内容不要随意补充;不要擅自调整内容顺序;教辅材料不能作为教学的依据;把更多的注意力放在核心概念、基本数学思想方法上;追求通性通法,不追求特技。

  3.适当使用信息技术。新课程主张多媒体教学。在教材中很容易发现新课改对信息技术在数学教学上的'应用,并在配备的光盘中提供了相当数量的课件,有利于学生更全面的吸收知识,提高课堂注意力和学习的兴趣。但我还是认为,多媒体知识教学的辅助手段,选不选用多媒体要看教学内容。尤其是数学这门学科,有些直观的内容用多媒体还是不错的,但有的内容诸如让学生思考体会的问题不是很适合多媒体教学的。根据学习内容需要选择恰当的信息技术工具和使用科学型计算器;提倡适当使用各种数学软件。

  4.充分发挥集体备课的作用。利用每周一次的集体备课,认真讨论本周的教学得失,研究下周所教内容的重难点,安排周练的内容。要根据实际情况,有针对性地组编训练题,做到每周一次综合训练(同步或滚雪球式的保温训练),一次微型补差训练,要搞好单元过关训练。选题要注意基础,强化通法,针对性强,避免对资料上的训练题全套照搬使用。要重视对数学尖子生的培养,力争在数学竞赛中取得好成绩。

  5.在重视智力因素的同时必须关注非智力因素。应认识到非智力因素在学生全面发展和数学学习过程中所起的重要作用,并内化为自觉的行为,切实培养学生学习数学的兴趣和良好的个性品质。

高一数学教学计划8

  教学目标

  1通过对幂函数概念的学习以及对幂函数图象和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。

  2使学生理解并掌握幂函数的图象与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。

  3培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。

  教学重点、难点

  重点:幂函数的性质及运用

  难点:幂函数图象和性质的发现过程

  教学方法:问题探究法教具:多媒体

  教学过程

  一、创设情景,引入新课

  问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?

  (总结:根据函数的定义可知,这里p是w的函数)

  问题2:如果正方形的边长为a,那么正方形的面积,这里S是a的函数。问题3:如果正方体的边长为a,那么正方体的体积,这里V是a的函数。问题4:如果正方形场地面积为S,那么正方形的边长,这里a是S的函数问题5:如果某人s内骑车行进了km,那么他骑车的速度,这里v是t的函数。

  以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

  二、新课讲解

  由学生讨论,(教师可提示p=w可看成p=w1)总结,即可得出:p=w, s=a2, a=s , v=t-1都是自变量的若干次幂的形式。

  教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数。

  幂函数的定义:一般地,我们把形如的函数称为幂函数(power function),其中是自变量,是常数。 1幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念)结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的`解析式看有如下区别:对幂函数来说,底数是自变量,指数是常数对指数函数来说,指数是自变量,底数是常数例1判别下列函数中有几个幂函数?

  ① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由学生独立思考、回答)

  2幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?

  (学生讨论,教师引导。学生回答。)

  3幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域?

  (学生小组讨论,得到结论。引导学生举例研究。结论:幂指数不同,定义域并不完全相同,应区别对待。)教师指出:幂函数y=xn中,当n=0时,其表达式y=x0=1;定义域为(-∞,0)U(0,+∞),特别强调,当x为任何非零实数时,函数的值均为1,图象是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外。)

  例2写出下列函数的定义域,并指出它们的奇偶性:①y=x ②y= ③y=x ④y=x

  (学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。)

  4上述函数①y=x ②y= ③y=x ④y=x的单调性如何?如何判断?

  (学生思考,引导作图可得。并加上y=x和y=x-1图象)接下来,在同一坐标系中学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示。见后附图1

  让学生观察图象,看单调性、以及还有哪些共同点?(学生思考,回答。教师注意学生叙述的严密性。)

  教师总评:幂函数的性质

  (1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1),(2)如果a>0,则幂函数的图象通过原点,并在区间[0,+∞)上是增函数,(3)如果a<0,则幂函数在(0,+∞)上是减函数,在第一区间内,当x从右边趋向于原点时,图象在y轴右方无限地趋近y轴;当x趋向于+∞,图象在x轴上方无限地趋近x轴。

  5通过观察例1,在幂函数y=xa中,当a是(1)正偶数、(2)正奇数时,这一类函数有哪种性质?

  学生思考,教师讲评:(1)在幂函数y=xa中,当a是正偶数时,函数都是偶函数,在第一象限内是增函数。(2)在幂函数y=xa中,当a是正奇数时,函数都是奇函数,在第一象限内是增函数。

  例3巩固练习写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x ②y=x ③y=x 。

  例4简单应用1:比较下列各组中两个值的大小,并说明理由:

  ①0.75,0.76 ;

  ②(-0.95),(-0.96) ;

  ③0.23,0.24 ;

  ④0.31,0.31

  例5简单应用2:幂函数y=(m -3m-3)x在区间上是减函数,求m的值。

  例6简单应用2:

  已知(a+1)<(3-2a) ,试求a的取值范围。

  课堂小结

  今天的学习内容和方法有哪些?你有哪些收获和经验?

  1、幂函数的概念及其指数函数表达式的区别

  2、常见幂函数的图象和幂函数的性质。

  布置作业:

  课本p.73 2.3.

  4、思考

  5

高一数学教学计划9

  一、指导思想

  本学期高一备课组以学校工作计划为指导,以提高教学质量为目标,以优化课堂教学为中心,团结合作,努力提高思想素质和业务素质,团结合作,互相学习,认真备好课,上好每一节课,并结合新教材的特点,开展研究性学习的活动,在教学中,抓好基础知识教学,着重学生本事的培养,打好基础,全面提高,为来年高考作好充分的准备,争取优异的成绩。

  二、教学目标、

  (一)情意目标

  (1)经过分析问题的方法的教学,培养学生的学习的兴趣。

  (2)供给生活背景,经过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究三角函数的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维本事的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

  (二)本事要求

  1、培养学生记忆本事。

  (1)经过定义、命题的`总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)经过揭示三角函数有关概念、公式和图形的对应关系,培养记忆本事。

  2、培养学生的运算本事。

  (1)经过概率的训练,培养学生的运算本事。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算本事。

  (3)经过算法初步,1算法步骤2程序框图(起始框,确定框,附值框,)3silab语言(顺序,条件语句,循环语句)。第二部分,统计,第三步分,概率,古典概型,几何概型。的教学,提高学生是运算过程具有明晰性、合理性、简捷性本事。

  (4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算本事,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算本事。

  三、具体措施

  1、期中考前上好第一册(必修

  3),期中考后完成好必修4

  2、抓好数学补差,培优活动各班在星期

  1或星期4的午时

  3、立足于教材。

  4、要求学生完成课后练习及每一章课后习题

  5、我们组还继续学习了《课堂教学论》,《现代教育技术》,努力学习多媒体课件的制作。

  6、继续认真开展师徒结对活动,以老带新。师徒间经常听课交流,认真评课。集中备课,共同商讨教材等。

  7抓好竞赛辅导,时间定于周三、周四的提前时间,周六的午时1点到3点;任教教师:高一全体数学教师。

  8、段统一考试在周日或者周三的晚自修时间,每隔

  2周考一次;

  9、上学期必修

  4的学分认定考试补考及落实工作;

  10、响应学校教务处的备课计划安排,督促组员落实工作;

  11、抓好团体备课

高一数学教学计划10

  一、教材分析(结构系统、单元内容、重难点)

  必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;

  必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;

  二、学生分析(双基智能水平、学习态度、方法、纪律)

  较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。

  三、教学目的要求

  1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。

  2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的.函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。

  3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。

  4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

  四、完成教学任务和提高教学质量的具体措施

  积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。

  五、教学进度

  周次课、章、节教学内容备注

  1 1.1,1.2解三角形

  2 1.2解三角形

  3 2.1,2.2数列的概念与简单表示法,等差数列

  4 2.3等差数列的前n项和

  5 2.4,2.5等比数列及前n项和

  6 2.5考试

  7 3.1,3.2不等关系与不等式,一元二次不等式及其解法

  8 3.3,3.4二元一次不等式(组)与简单线性规划问题,基本不等式

  9考试,复习

  10期中考试

  11 1.1,1.2空间几何体的结构,三视图,直观图

  12 1.3空间几何体的表面积与体积

  13 2.1,2.2空间点、直线、平面的位置关系,直线、平面平行的判定及其性质

  14 2.3直线、平面的判定及其性质

  15 3.1,3.2直线的倾斜角与斜率,直线方程

  16 3.3直线的交点坐标与距离公式

  17 4.1,4.2圆的方程,直线、圆的位置关系

  18 4.3空间直角坐标系

  19复习

  20考试

高一数学教学计划11

  新学期已开始,为使新学期的工作有条不紊的进行,使教学工作更加科学合理,使学生对知识的接收更加得心应手,特订新学期个人教学计划如下

  一,指导思想

  加强现代教育理论的学习,提高自身的素质,转变教育观念,以教育科研为先导,以培养学生的创新精神和实践能力为重点,深化课堂教学改革,大力推进素质教育。

  二,教材分析

  本册教材具有以下几个明显的特点:

  1。为学生的数学学习构筑起点

  教科书提供了大量数学活动的线索,作为所有学生从事数学学习的出发点。目的是使学生能够在所提供的学习情景中,通过探索与交流等活动,获得必要的发展。

  2,向学生提供现实,有趣,富有挑战性的学习素材

  教科书从学生实际出发,用他们熟悉或感兴趣的问题情景引入学习主题,并提供了众多有趣而富有数学含义的问题,以展开数学探究。

  3,为学生提供探索,交流的时间与空间

  教科书依据学生已有的知识背景和活动经验,提供了大量的操作,思考与交流的机会,帮助学生通过思考与交流,梳理所学的.知识,建立符合个体认知特点的知识结构。

  4,展现数学知识的形成与应用过程

  教科书采用"问题情境—建立模型—解释,应用与拓展"的模式展开,有利于学生更好地理解数学,应用数学,增强学好数学的信心。

  5,满足不同学生的发展需求

  教科书中"读一读"给学生以更多了解数学,研究数学的机会。教科书中的习题分为两类:一类面向全体学生;另一类面向有更多数学需求的学生。

  三,教材的重点和难点

  本册教材从内容上看,教学重点是三角形和四边形的性质定理

  和判定定理的应用以及一元二次方程的应用。教学难点是对反

  比例函数的理解及应用;用试验或模拟试验的方法估计一些复

  杂的随机时间发生的概率。

  四,教学措施:

  1,根据学生实际,创造性地使用教材,积极开发和利用各种教学资源,为学生提供丰富多彩的学习素材。

  2,加强直观教学,充分利用教具,学具等多媒体教学,以丰富学生感知认识对象的途径,促使他们更加乐意接近数学,更好地理解数学。

  3,关注学生的个体差异,有效的实施有差异的教学,使每个学生都能得到充分的发展。

  4,加强学生学习习惯的培养,主要培养学生的书写,认真分析问题的习惯。同时注意学习态度的培养。

  五,时间安排

  4月1日——4月20日一元二次方程

  5月16日——5月31日反比例函数

  6月1日——6月10日频率与概率

  6月11日——7月11日复习考试

高一数学教学计划12

  本学期,我负责高一三、四班的数学教学。这两个班有138名学生。初中生基础薄弱,整体水平不高。从两周的课堂来看,学生的学习积极性仍然很高,有很多学生喜欢提问。但由于基础知识薄弱,学习习惯差,自我控制能力差,无法正确定位自己,课堂效率普遍,教学工作存在必要的难度。为了做好本学期的教学工作,特制定以下教学工作计划。

  一、教学质量目标

  (1)掌握必要的数学基础知识和技能,理解基本数学概念和数学结论的实质,体验数学思想和方法。

  (2)培养学生的逻辑思维能力、计算能力、空间想象能力,以及综合运用相关数学知识分析和解决问题的能力。使学生逐步学会观察、分析、综合、比较、抽象、概括、探索和创新的技能,运用归纳、演绎、类比的方法进行推理,正确、系统地表达推理过程的技能。

  (3)根据数学学科特点,加强学习目的教育,提高学生学习数学的意识和兴趣,培养学生良好的学习习惯、求实的科学态度、顽强的学习毅力和独立思考的精神,探索创新。

  (4)使学生具有必要的数学视野,逐步理解数学的科学价值、应用价值和文化价值,形成批判性思维习惯,倡导数学的'理性精神,体验数学的审美意义,理解普遍运动、变化、创新、创新,数学相互联系、相互转化,进一步树立辩证唯物主义和历史唯物主义的世界观。

  (5)通过收集信息、处理数据、制作图像、分析原因、得出结论,学习解决实际问题的思维方法和操作方法。

  (6)本学期是高一的重要时期。教师负有双重责任。他们不仅要不断夯实基础,加强综合技能的培养,还要渗透高考思想方法,准备三年的学习。

  二、教学目标

  (I)情感目标

  (1)通过问题分析的教学方法,培养学生的学习兴趣。

  (2)提供生活背景。通过数学建模,让学生认识到数学是存在的,培养学习数学和运用数学的意识

高一数学教学计划13

  教学分析

  课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.

  值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与?的区别.

  三维目标

  1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.

  2.在具体情境中,了解空集的`含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.

  重点难点

  教学重点:理解集合间包含与相等的含义.

  教学难点:理解空集的含义.

  课时安排

  1课时

  教学过程

  导入新课

  思路

  1.实数有相等、大小关系,如

  5=5,5<7 5="">3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)

  欲知谁正确,让我们一起来观察、研探、思路

  2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R.

  类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)?;(3)∈)

  推进新课

  提出问题

  (1)观察下面几个例子:

  ①A={1,2,3},B={1,2,3,4,5};

  ②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;

  ③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};

  ④E={2,4,6},F={6,4,2}.

  你能发现两个集合间有什么关系吗?

  (2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?

  (3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?

  (4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?

  (5)试用Venn图表示例子①中集合A和集合B.

  (6)已知A?B,试用Venn图表示集合A和B的关系.

  (7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?

  (8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?

  (9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?

  活动:教师从以下方面引导学生:

  (1)观察两个集合间元素的特点.

  (2)从它们含有的元素间的关系来考虑.规定:如果A B,但存在x∈B,且x A,我们称集合A是集合B的真子集,记作A B(或B A).

  (3)实数中的“≤”类比集合中的.

  (4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.

  (5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.

  (6)分类讨论:当A B时,A B或A=B.

  (7)方程x2+1=0没有实数解.

  (8)空集记为,并规定:空集是任何集合的子集,即A;空集是任何非空集合的真子集,即A(A≠ ).

  (9)类比子集.

  讨论结果:

  (1)①集合A中的元素都在集合B中;

  ②集合A中的元素都在集合B中;

  ③集合C中的元素都在集合D中;

  ④集合E中的元素都在集合F中.

  可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.

  (2)例子①中A B,但有一个元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.

  (3)若A B,且B A,则A=B.

  (4)可以把集合中元素写在一个封闭曲线的内部来表示集合.

  (5)如图1121所示表示集合A,如图1122所示表示集合B.

  图1-1-2-1图1-1-2-2

  (6)如图1-1-2-3和图1-1-2-4所示.

  图1-1-2-3图1-1-2-4

  (7)不能.因为方程x2+1=0没有实数解.

  (8)空集.

【高一数学教学计划】相关文章:

数学高一教学计划03-10

高一的数学教学计划06-12

高一数学的教学计划01-17

高一数学教学计划01-02

高一数学教学计划05-08

高一数学的教学计划03-14

高一数学教学计划06-16

高一数学教学教学计划02-06

苏教版高一数学教学计划12-28

新高一数学教学计划12-24

Copyright©2003-2024xianxue.com版权所有