当前位置:贤学网>范文>教学反思> 《圆锥的体积》教学反思

《圆锥的体积》教学反思

时间:2024-10-01 11:08:09 教学反思 我要投稿

《圆锥的体积》教学反思

  身为一名刚到岗的教师,课堂教学是我们的工作之一,写教学反思可以快速提升我们的教学能力,怎样写教学反思才更能起到其作用呢?以下是小编帮大家整理的《圆锥的体积》教学反思,希望对大家有所帮助。

《圆锥的体积》教学反思

《圆锥的体积》教学反思1

  在教学“圆锥的体积”这一课时,我没有用传统的讲解演示法去组织教学,而是采用探究性学习的方法组织学生的学习活动。围绕怎样能让学生积极参与探究活动的问题,我思索了好一阵子,曾作过这样的设计:圆锥的体积大小与什么有关?当学生回答与圆锥的底面积和高有关时,教师接着问:已知圆锥的底面积和高怎样计算圆锥的体积?这时,估计有学生很快说出计算公式,因为有学生已看过书,这是班级学生的实际情况,此时教师该怎么办?不让这些学生回答,这是对他们的不尊重,可能会打消他们学习的积极性,如果让他们回答,势必会影响班上绝大多数学生探索的积极性,因为他们原本是不知道这个结论的,现在结论已给出,又何必苦苦进行探索?

  我反复地思考着,预想着学生中可能会出现的种种情况……,于是我决定提问:你能想什么办法自己去发现圆锥体积的计算公式?这一问题的提出,不在公式本身,而在于发现公式的思考方法上,我想,小学生往往只关心结果,不注意思考方法和过程,既使看过书的学生,大多也未曾思考为什么会是这样之类的问题,这问题能将学生的思维聚焦在探究的`方法上,而重视对探究方法的思考,正是我们的数学教学应该加强的,问题一提出,学生就置身于问题情景中,兴趣盎然地投入探究活动之中。

  实践证明,整个学习过程,是一个积极探究的过程,学生始终是主动的探索者,从教学效果来看,学生不仅主动地建构计算圆锥体积的新知,而且思考力得到有效的培养。

  课后反思这节课,我想探究性学习决不是让学生盲目的试误,否则将会出现形似探究,实际上还是讲解灌输的教学。我认为,进行探究性学习的关键是:教师要将自己假设成学生,了解学生思维的实际情况,善于将书本上结论性知识转变成学生乐于探究的问题,从而燃起学生探究的欲望,使学生以饱满的情态积极投入到探索性学习活动中,教师还必须引导学生关注探究的方法,给予探究方法的指导,让学生在探究中学会探究,提高主动获取知识的能力。

《圆锥的体积》教学反思2

  【教材解读】

  《圆锥的体积》这部分知识是小学阶段学习几何知识的最后一部分内容,也是人们在生产生活中经常遇到的几何形体,教学这部分内容,有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础,我认为《圆锥的体积》这部分内容在本单元中占有十分重要的地位。

  【学情分析】

  高年级学生分析问题,解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们已掌握了一些几何知识,了解部分几何图形之间的转化方法。但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。针对学生的实际,教学中我主要采用观察法,猜想、操作等方法,组织学生探索规律,归纳总结,体验知识的生成和形成。

  【教学目标】

  1. 通过学生动手操作实验发现等底等高的圆锥体积之间的关系,从而得出圆锥体积的计算公式,并能运用所学知识解决实际问题。

  2. 培养学生的动手操作能力和探究意识,发展学生的空间观念。

  3. 通过生活中的故事,培养学生良好的思想品德。

  【重点难点】

  1.圆锥的体积公式的推导过程

  2.进一步理解圆锥的体积公式,能运用公式进行计算,能解决简单的实际问题。

  【教学策略】

  1.加强实践操作:

  《数学课程标准》中要求“在教学中,应注重使学生探索现实世界中有关空间与图形的问题;应注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、大小、位置关系及变换”。所以,在教学中,设计了多次实验环节,让学生自己动手,亲身经历圆锥体积公式的推导过程,让学生的多种感官参与学习活动,在理解知识的基础上,发展学生思维。

  2. 整合课程资源,创造性地使用教材;

  数学课程要关注学生的生活经验,在引入新知时,我创设了一个贴近生活的情境,使枯燥的数学问题变为活生生的生活现实,让学生的课堂气氛充满了乐趣和活力,在探究圆锥体积公式时,设计了两次试验,使学生更加明白了:只有“等底等高”的圆锥和圆柱体积才能有3倍的关系。引导学生由表及里,层层逼近的过程,进行深的信息加工。

  3.鼓励学生独立思考,引导学生自主探索,合作交流。

  在教学中,我积极鼓励学生独立思考,自主探索,小组合作交流,通过小组合作完成实验过程,实验过程中培养学生敢于质疑,乐于交流与合作的能力。

  【教学过程】

  一、创设情境,引发猜想

  1.播放录像。

  夏天,小朋友们玩得大汗淋漓。小雅去“便利超市”购物,在冷饮专柜那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的小林看见了,小林的眼珠咕噜一转,计上心来。他去冷饮专柜里买了一个圆锥形的雪糕。小雅刚张开嘴,满头大汗的小林拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)

  2.引导学生围绕问题展开讨论。

  二、自主探索,操作实验

  同学们利用老师提供的实验材料分组操作,自己发现圆柱与圆锥体积间的关系。注意每个学生要先根据老师提供的材料思考实验方法,然后小组讨论拿出最优方案,组员分好工,然后开始实验。

  1.小组实验。

  (1)学生分5组操作实验,教师巡回指导。(每组的圆柱和圆锥是等底等高的,各组间的大小不同。教师提示:用沙子做实验的小组往容器里装沙子时注意不要用手使劲压,装满后用尺刮平即可。用水做实验的小组往容器里装水时注意把容器装满。这样能保证实验的科学性。)

  (2)同组的学生做完实验后,进行交流

  2. 集体交流。

  (各小组汇报,结论是:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。)

  3、深入探究“等底等高”

  4. 推导公式。

  同学们尝试一下,用V、S、h、表示圆锥的体积公式?(生独立写公式)

  5. 问题解决。

  同学们再回到故事中,你们应该知道小雅和小林怎样交换才公平合理了吧?它需要什么前提条件?

  三、运用公式,解决问题

  1、教学例3。

  工地上有一些沙子,堆起来近似于一个圆锥。它底面直径是4米,高是1.2米。这堆沙子大约多少立方米?(得数保留两位小数)

  2. 学生尝试计算,指名板演,集体订正。

  汇报:(1)沙堆底面积3.14×(4÷2)2

  =3.14×4

  =12.56(平方米)

  (2)沙堆的体积1/3×12.56×1.2

  =4.19×1.2

  ≈5.02(立方米)

  答:这堆沙子大约5.02立方米?

  四、实践应用,拓展深化

  1、填空。

  1)一个圆柱体积是10立方米,和它等底等高的圆锥体积是( )立方米。

  2)一个圆柱钢材能溶铸成( )个与它等底等高的圆锥体。

  2、判断。

  1)圆锥体积是圆柱体积的1/3。( )

  2)圆柱体积一定比圆锥体积大。( )

  3)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1( )

  4)圆锥体积等于和它等底等高的圆柱体积的1/3。 ( )

  3、圆锥的底面积是7.8平方厘米,高是2厘米,体积是多少立方米?

  4、神舟五号宇宙飞船的上端是一个圆锥形,它的底面直径是2米,高2.1米,你能求出它的体积吗?

  5、哈南双语幼儿园的屋顶是圆锥形,测量出它的底面周长是12.56米,高是6米,它的体积是多少?

  五、质疑问难,总结升华

  通过这节课的学习,你们有哪些收获?

  【板书设计】

  圆锥的体积

  1/3

  V=1/3Sh

  例3

  工地上有一些沙子,堆起来近似于一个圆锥。它底面直径是4米,高是1.2米。这堆 沙子大约多少立方米?(得数保留两位小数)

  (1)沙堆底面积 3.14×(4÷2)2

  =3.14×4

  =12.56(平方米)

  (2)沙堆的体积 1/3×12.56×1.2

  =4.19×1.2

  ≈5.02(立方米)

  答:这堆沙子大约5.02立方米?

  【教学资源】

  义务教育课程标准实验教科书教师教学用书

  【教学反思】

  今天上了《圆锥的体积》这节课,反思整堂课的教学,自我感觉较为满意的是以下几点:

  1.大胆猜测,培养猜测意识

  假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造我想都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,我在教学中把生活中的故事引入数学课堂,让学生大胆猜想它们的体积可能会有什么样的关系?使课堂充满生机、乐趣,激发了学生的求知欲,然后让学生借助学具进行实验、探究。事实证明这样教学设计不仅仅是能够培养学生的猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的欲望强烈,为本节课的成功教学奠定了基础。

  2.操作验证,培养科学的`实验观。

  数学不仅是思维科学,也是实验科学。教学中,学生能通过观察、猜测、实验、验证、推理与交流等数学活动,积极主动地发现了等底等高的圆柱与圆锥体积间的关系,进而推导出圆锥体积的计算公式:V=1/3Sh。在整个教学过程中,我非常重视让学生参与教学的全过程,学生始终是活动的主体。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己的实验结论,培养了学生科学的实验观。

  3.重视课堂资源的生成

  教学中“圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?”这一教学环节不是预先设计的。它是课堂中随机生成的,却饱含着教师和学生真实的、情感的、智慧的、思维和能力的投入,有互动的过程,气氛相当活跃。在这个过程中既有资源的生成,又有过程状态生成,让学生在实践中进一步明确了:只有等底等高,圆锥的体积才能是圆柱体积的三分之一。 总之,这节课,每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们不仅收获了知识更体验到了探究成功的喜悦。

  【教学评析】

  1.教师能深入了解学生,对学生的原有认知水平、知识技能、情感态度,即学习起点能力分析得比较清楚。力求构建一种非直线型的教学路径,这样的教学设计思路值得提倡。

  2.教师能利用《数学课程标准(实验稿)》的理念处理教材,加工教材。如本节课结合了现实中的具体情景,创设了一个学生喜闻乐见的生活情境,并把这一故事情节贯穿整节课的始终。教学中做到了一波未平,一波又起,整节课的结构浑然一体。教师遵循了“现实题材——数学问题——数学模型——数学方法——解决问题”的过程来设计教学,引导学生亲身经历将实际问题抽象成数学模型,并进行探索与应用的过程,使学生逐步学会用数学知识和方法解决生活中的实际问题。

  3.本节课在实验探索中,学生通过小组合作,发现出等底等高的圆柱体积是圆锥体积的3倍,有的同学会持反对意见,这样刚刚建立起来的平衡旋即被打破,当大家发现他们的实验器材不等底等高时圆柱体积不是圆锥体积的3倍,又能建立起新的平衡,学生在“平衡——不平衡——新的平衡”中,认知结构得到了丰富和发展。

  4.多样化的数学活动,如实验、交流、推理、问题解决使学生的意义建构有了坚实的基础。学生的情感在认知的过程中也得到了和谐的发展,他们在相互交往中加深了理解、沟通和包容,品尝到了探索成功的喜悦。

  5.在数学课堂上教师不失时机的进行德育教育,体现了在学科中“情感态度价值观”的培养,在学科中渗了透德育教育,为数学课堂增添了亮丽的一笔。

  6、本节课教师引领学生积极探究新知,学生成为课堂上真正的主人,学生积极参与、自主合作探究知识,实现了学习方式的多样化。课堂上师生互动,注重学生的态度和情感的体验。回归常态教学,教学真实、扎实、朴实,构建了充满生命活力的课堂。

  《圆锥的体积》课堂实录

  一、创设情境,引发猜想

  1.播放录像。

  师:夏天,小朋友们玩得大汗淋漓。小雅去“便利超市”购物,在冷饮专柜那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的小林看见了,小林的眼珠咕噜一转,计上心来。他去冷饮专柜里买了一个圆锥形的雪糕。小雅刚张开嘴,满头大汗的小林拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)

  2.引导学生围绕问题展开讨论。

  师:小林对小雅说:“我的雪糕可好吃了,我们来换一换吧!”小雅看了看她的雪糕,又看了看自己的雪糕,小雅陷入了沉思……”同学们,故事先讲到这。如果此时小雅和小林换了雪糕,你觉得小雅有没有上当?

  生:我觉得小雅上当了,小林的雪糕小。

  师:好,你的眼力真不错。如果这时小林手上又多了一个同样大小的圆锥形雪糕。小雅这时和小林换雪糕,你们觉得公平吗?

  生:公平。

  生:我觉得还是不公平,小雅还是吃亏。

  师:同学们有不同的看法了,假如你现在就是小雅,小林手中的圆锥形雪糕有几个时,你才认为公平合理,才肯与他交换?

  生:四个。

  生:五个。

  生:三个。

  师:小雅究竟用几个跟小林怎样交换才公平合理呢?(学生沉默,几秒后有学生举手) 生:老师如果知道他们的体积就好办了,可是我们只会求圆柱的体积,不会求圆锥的体积。(学生均点头)

  师:你的想法非常好。那圆锥的体积怎样计算呢?大家想知道吗?

  生合:想。

  师:好,这节课我们就一起来探究一下圆锥的体积这部分知识。(板书)

  二、自主探索,操作实验

  师:下面,请同学们利用老师提供的实验材料分组操作,自己发现圆柱与圆锥体积间的关系。注意每个学生要先根据老师提供的材料思考实验方法,然后小组讨论拿出最优方案,组员分好工,然后开始实验。

  1.小组实验。

  (1)学生分5组操作实验,教师巡回指导。(每组的圆柱和圆锥是等底等高的,各组间的大小不同。教师提示:用沙子做实验的小组往容器里装沙子时注意不要用手使劲压,装满后用尺刮平即可。用水做实验的小组往容器里装水时注意把容器装满。这样能保证实验的科学性。)

  (2)同组的学生做完实验后,进行交流

  2. 集体交流。

  师:下面请各个小组同学汇报你们是怎样实验得出结论的。

  (各小组汇报,结论是:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。)

  3、深入探究“等底等高”

  师:各小组的结论都是一样的:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。那老师就奇怪了,你们各小组间的圆柱和圆锥的大小不一样啊,结论怎么会一样呢?难道你们手中的圆柱和圆锥之间有什么奥妙吗?想知道吗?快探究一下吧!(生合作探究)

  师:你们发现了什么?

  生:我们发现圆柱和圆锥的底面积相等高也相等。

  师:这用四个字概括就是“等底等高”。

  生:我们也发现圆柱和圆锥等底等高。

  师:也就是说只有圆柱和圆锥是等底等高的时候,圆锥体积才是圆柱的体积的1/3。 生:(举手提问)老师,圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?

  师:这名同学提得问题非常有价值,他问:“圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?”大家说是吗?

  生:我认为圆柱和圆锥不等底等高,他们的体积不会是3倍的关系了。(大多数同学点头,同意他的观点。)

  生:我和他的意见不同,我认为圆柱和圆锥不等底等高,他们的体积还是三倍的关系。(有几名学生表示同意)

  师:有的同学认为是,有的同学认为不是。那么这样,小组间调换一下圆锥,使你手中的圆

《圆锥的体积》教学反思3

  在本节课中,通过用排水法测量外形类似于圆锥的体积(比如铅锤)不但麻烦,而且有时还不能用(比如测量麦堆的体积),体会此方法具有一定的局限性而引入新课。从面上的相似性知道圆锥的体积可能与圆柱的有关,然后经历大胆猜测、实验验证、分析实验结果,从而得出体积公式的过程。再利用适当的练习巩固公式而达到本节课的教学目的.。本节课总体感觉很顺畅,学生思维活跃。在课堂上利用实物演示,较好地引导学生思考,总结出等底等高的圆柱与圆锥之间的关系,突出了重点,突破了难点。

  《数学课程标准》明确指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念。课中让学生动手分别用圆锥和圆柱盛沙,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。同时,课堂教学注重让学生自主学习,合作探究,充分发挥了学生的学习主动性,也培养了学生的创新能力。

  虽然本节课达到了教学目的,取得了不错的教学效果,但也存在一些不足,由于受条件限制,学具准备不够充分;课堂语言还不够简练;在学生汇报时,没有抓住生成;没有认真研究不等底不等高的体积关系等。在以后的教学过程中一定会注意这些问题,使自己不断地进步。

《圆锥的体积》教学反思4

  圆锥的体积是在学习了圆锥的认识的基础上进行教学的。

  这节课我是这样设计的:第一部分,复习圆锥的特征和圆柱的体积=底面积×高。反思:复习旧知识之间的联系,便于运用已学知识推动新知识的学习,为学习新知识做准备。

  第二部分,便于圆柱体积的计算公式,先让学生用转化的思想大胆猜测,能否把体积计算方法转化成已学过的立体图形来推导圆锥体积公式呢?学生猜测之后,让学生拿出手中等底等高的圆柱体,然后同桌讨论得出结论,全班交流。再进行第二次实验,同桌交换圆柱或圆锥倒进沙子之后,同桌讨论,全班交流,老师引导学生两次实验的结论有什么不同,经过学生的讨论,师生归纳出:圆锥的体积等于等底等高的圆柱体积的三分之一。并强调V=3SH的前提条件是等底等高。

  反思:这一环节让学生用转化的'思想猜测,激发学生的学习兴趣,调动学生的探究欲望。紧接着让学生两次动手实验,亲自体验知识的探究过程。符合小学生的认知规律,便于学生主动地获取知识,掌握正确的学习方法。通过实验,学生参与了知识的形成过程,得出了只有在等底等高的情况下圆锥的体积是圆柱的三分之一,否则这个结论不成立。

  全课反思:英国教育家思宾塞说过:“在教育中应该尽量鼓励个人发展的过程,应该引导儿童自己进行探究,自己去推理,给他们讲的应该尽量少,而引导他们去发现的应该尽量多,这样教师在教学中才能真正由重结果向重过程转变,成为学生的组织者、引导者与合作者”。因此,这节课,我引导学生进行实验,放手让他们动手操作,在操作的过程中得出结论,突破教学难点,理解圆锥的体积计算方法。看着孩子们听到老师的称赞,他们那开心的笑脸,我想:只有让孩子们成为学习的主人,老师只做引导者和合作者,引导得当,合作愉快时,那我们就真正起到了教书育人的作用,还有谁不想学习数学这门有意义的课程呢? 1

《圆锥的体积》教学反思5

  本节课《圆锥的体积》以谈话法、实验法为主,讨论法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。小学阶段学习的几何知识是直观几何。小学生学习几何知识不是靠严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识,而且在教学中我注重如何有效的引导学生探究。

  例如,在上课开始,我是让学生回忆圆柱体积公式的推导过程,

  让学生猜测圆锥的体积也可以借助我们已经学过的图形来验证,培养学生的迁移类推能力。到学生猜测出用圆柱的体积来帮助研究圆锥时,再进一步让学生猜测圆柱与圆锥之间的关系,激起学生的学习兴趣,然后马上让学生自己以小组为单位去验证自己的猜测是否正确,让每个学生都经历一次探究学习的过程。每个学生都经历了“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,按自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。

  在探究圆锥体积计算方法的学习过程中,学生不再是实验演示的.被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,获得更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。而且在探究出圆锥体积公式的基础上,再让他们想办法计算出他们小组实验用的圆锥的体积,又一次给了学生探究的空间,使他们对不光能得出圆锥的体积公式,而且知道怎么应用它。

  充分发挥了学生的个性潜能。在学习中充分发挥学生的潜能,让他们按自己的观察进行猜测估计,按自己的设想操作学习,对自己学习情况进行总结,反思,在全体学生思维火花的相互碰撞中,出现了验证等底等高的圆锥体和圆柱体体积的方法。涌现出了对圆锥体体积计算公式中“1/3”的不同理解,实现了学习策略的多样化,丰富了学生的学习资源。

《圆锥的体积》教学反思6

  课前,我给每组学生准备一盆沙和等底等高的空心圆柱体、圆锥体各一个。课堂上组织学生4人一组,利用手中的学具一起来探索圆柱和圆锥体积之间的关系。

  学生们有的将圆锥中装满沙倒入圆柱中;有的将圆柱中装满沙倒入圆锥中……很快推导出圆锥的体积公式。在交流中,学生经常把“等底等高”漏掉,作业时不注意“等底等高”条件,错误率也很高。

  反思:教师为了让学生快速完成操作推导出公式,给学生准备学具,只让学生来体验得出结果的`一部分操作。这样做截断了知识的本源,学生忽视了对“等底等高”这一重要条件的认识,因而对发现的规律认识不全面,最终运用规律去解决新问题时也错误百出。其实,教师可以让学生准备“等底等高”的圆柱、圆锥;不等底不等高的圆柱、圆锥,这样4组来装沙操作。这样的探究具有很强的选择性、探索性和创造性,学生在不断地测量、比较、猜测、验证中发现“只有圆柱与圆锥等底等高”,圆锥的体积才是圆柱体积的1/3。

  收获:

  ①探究活动时,教师应避免探究问题开放中“材料过少”的现象;

  ②探究的问题应该在材料准备上开放;

  ③让学生在充足、具有比较性的实验操作材料的基础上达到全面探究的目的。

《圆锥的体积》教学反思7

  1、学生通过自己的实验,非常顺利地得到等底等高的圆柱和圆锥体积之间的关系,推导出来圆锥的体积计算公式。原因之处有:(1)猜想:发挥学生的空间想象,使学生初步建立圆锥与圆柱体积之间的关系,教师预设学生可能粗略地知道有“三分之一”这一关系,“那么三分之一这一关系怎样推导呢”引起以下怎样推导圆锥的体积这一过程。

  (2)在推导过程中,带着思考题(思考题实际就是学生实验的过程),让学生带有目标进行实验,让学生更有目的性,也非常方便,有操作性。

  (3)学具准备充分,各小组选择水、沙子,增强趣味性,主动性,积极性高。

  (4)公式推导完之后的一个反例子(出示一个非常大的圆柱和一个非常小的圆锥),让学生明确并不是所有的圆锥的体积都是圆柱体积的三分之一,从而强调了等底等高。

  2、练习题由浅入深,判断题主要是要加深学生对概念、公式的.运用和理解,第2题是书上的一组题,为提高效率只列式不计算,这三道题分别是告诉底面积和高、底面半径和高、底面直径和高,把几种类型都呈现出来。最后一题是动手实践题,一要考察学生的公式运用情况,二要考察学生的解决实际问题的能力及策略,虽然没做几道题,但我觉得:解决问题比什么都重要。

  3、本来想用不等底、不等高的圆柱和圆锥参与实验,考虑到可能会得出错误结论而影响体积公式的推导,所以把这一环节省去。设计了一组大的等底等高的圆锥和圆柱,让学生明确不管大小,只要等底等高就有3倍这样的关系。

  4、时间分配上不到位,例题的处理中,考虑到本节的重点是理解公式并运用公式,所以没花多的时间,由于数字教大,部分学生没做完

《圆锥的体积》教学反思8

  圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。以往几次,都是按老方法进行,一开始教师就准备了一个圆柱和一个圆锥,先比较它们的底面积相等,再分别量出它们的高也相等。进而由老师做实验,把圆锥装满水(或沙)往圆柱里倒,学生观察倒了几次正好把圆柱装满。接着推导圆锥的体积等于圆柱体积的三分之一,并重点强调求圆锥的体积一定要乘三分之一。一节课上下来非常轻松,非常顺利,时间也充足,作业效果也还不错。可是到了综合运用问题就出来了:忘记乘三分之一的,计算出错的,已知圆锥的体积和底面积,求高时,直接用体积除以底面积的,出的错误五花八门。

  再上这节课时,我加强了以下几个点的教学,收到了较好的效果。

  1、教学新课时,我出示一个圆柱体和一个圆锥体让学生观察并猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的'猜想,所以做起实验就兴趣盎然;

  2、实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。学生获得的不仅是新活的数学知识,同时也获得了探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  3、学生做图形应用题时,引导学生审题,先确定是什么图形,再想相应的计算公式,最后根据公式列出算式。这样对于后面的综合运用题,学生有了这种固定思维模式,就不会乱列式,

  4、列出算式后,不要按部就班的从左算到右,先观察算式的特点,寻求简单的计算方法,把口算和计算有机结合。如:3.14×(4÷2)2×8时,先口算(4÷2)2=4,再口算4×8=32,最后再计算3.14×32。又如:×3.14×(4÷2)2×9时,先口算×9=3,(4÷2)2=4,3×4=12,再计算3.14×12。这样就大大地减少了学生计算难度,提高了计算的正确率。

《圆锥的体积》教学反思9

  圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。因此,我有针对性地设计、制作了本节课的辅助教学课件,既突出重点、突破难点,又激发学生的学习兴趣,优化教学过程,提高课堂教学质量。

  1、复习迁移,做好铺垫

  由于圆锥体的体积是在学生学过圆柱体的体积的基础上安排教学的,为了让学生回忆圆柱体的体积计算公式,以便为知识的迁移和新知识的学习做好铺垫,我制作了一张图文并茂的图文片向学生展示了一个圆柱体图形,并在图形下面用醒目的文字向学生提出问题:这是什么形体?它的体积应怎样计算?这样一张集文字、图形、声音于一体的图文片,很容易引起学生注意,营造学习气氛。

  2、创设情境,引入新知

  数学来源于生活,我取材于生活以创设情境,使教学过程与生活实际密联系起来,我制作了一张图文并茂的图文片向学生展示了晒谷场上一堆圆锥形的谷子,并在显眼的位置向学生巧设问题:这堆谷成什么形体?你们能求出这堆谷的体积吗?这样,激发了学生的求知欲望,把学生引入到新课探索的活动中。

  3、实验操作,推导公式

  圆锥体积的推导,是本节课的.教学难点,为了让学生直观感知圆锥的体积与它等底等高的圆柱的体积的关系。首先让学生用工具做实验,初步感知,再呈现我制作的图文片向学生演示:用圆锥装满水倒入和它等底等高的圆柱里的过程。并在动画下面巧设问题:用圆锥装满水倒入和它等底等高的空圆柱里,倒几次正好倒满?每次水的高度是圆柱高度的几分之几?有层次的教学设计,丰富多彩的教学活动,充分体现以教师为主导,以学生为主体的教与学的双边活动。学生通过认真操作实验,观察思考,都明白了圆锥的体积等于和它等底等高的圆柱体积的1/3,从而推导出圆锥体积的计算公式。

  4、自学尝试,解惑答疑

  为了提高学生解决实际问题的能力,我把课本上的例1制成一张图文片,配上悠闲的乐曲,让学生尝试解答。试做时,我则进行巡视,如有问题,个别辅导,接着指名回答。这样,能够把较多的时间留给学生,培养学生的自学能力,使他们从中体验到学习的成功的乐趣。

《圆锥的体积》教学反思10

  以前教学圆锥的体积时,由于教具的制作非常麻烦,多是先由教师演示等底等高情况下的圆柱体积的三分之一正好是圆锥的体积,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但收到的效果不佳,计算圆锥的体积时容易忘掉乘。学生对等底等高这一重要条件掌握并不牢固,理解很模糊。在本次课中,新课一开始,我就让学生观察,根据学习体积的经验,先判断四个圆锥的体积大小,引导学生猜测圆锥的体积和它的什么有关,学生联系到了圆柱的体积,都能说出圆锥的体积跟它的底面积和高有关系,在猜想中激发学生的学习兴趣,使学生明白学习目标。

  为了让学生理解等底等高是判断圆锥的'体积是圆柱体积的三分之一的前提条件,同时为了节约教学时间,我设计了这样的教学片断:让学生思考,圆锥与学过哪个立体图形的关系最近?为什么?学生很容易找到圆柱,接着我又拿出几个不同的圆柱,问:考考你们的眼力,选择哪个来研究这个圆锥的体积比较好?将学生选的圆柱进行验证,发现与圆锥是等底等高,告诉学生在选择实验材料时要尽量选择有些相同条件的,这样实验时可以少走弯路,实验的结果准确些,在这个过程中加深了对等底等高这个条件的理解。这时,让学生进行小组合做,实验探究,经历一番观察、发现、合作、创新的过程,得出圆锥体积等于和它等底等高圆柱体积的三分之一。这样让学生置身于有目的的实践中,增加对实验条件的选择及信息的归纳。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是优化实验过程所产生的效果。

  在小组合作学习中,为了增强实效性,避免走形式,在课前,我引导学生制作等底等高的一组圆柱和圆锥,使每个学生都能真切的参与实验、参与到探究中去,让他们以这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

  通过本节课的教学,我意识到在平时的课堂教学中,我们要善于利以学生认识发展规律为依托:发现问题,提出问题探究解决问题,探究解决问题得出结论,实际应用使学生在认识实践再认识、再实践中理解运用知识。在教学环节中以学生探究为基础引导学生在探究中总结规律,并运用规律解决实际问题,激发学生探究的兴趣感受到数学的应用性,解决问题的乐趣,逐步提高学生探究知识应用知识解决实际问题的能力。

  本节课的教学中比较遗憾的时,在制作课件时考虑不周全,几个圆锥的相关数据不准确,比例不合适,对学生的学习造成了不必要的麻烦,影响了学生的判断结果,这些看似细节的环节,却反映了在备课时的粗心大意,对学生也会产生不良的影响,今后要注意,时刻记住:细节决定成功!

《圆锥的体积》教学反思11

  让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。

  就正如探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的'是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。同时,在操作与实践的过程中让一些学习困难的学生也有参与的兴趣,让他们也能感受数学学习的快乐,使他们懂得他们也可以通过玩掌握到数学的知识。

  让每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。同时对于学习困难的学生该学习方法也是降低了他们对知识的掌握的难度。

  出现了验证等底等高的圆锥体和圆柱体体积的方法。涌现出了对圆锥体体积计算公式中“1/3”的不同理解,实现了学习策略的多样化,丰富了学生的学习资源。虽然学生的学习用具是固定的,但是他们所采用的方式却是不一样的。这也证明了学生是有着各自不同的思维方式的。

《圆锥的体积》教学反思12

  圆锥的体积这一部分内容是圆柱体积的迁移。在这节的设计上我主要是采用让学生自主探究----动手实践-----得出结论的模式进行教学的。在操作的过程中,我充分的利用学具,先让学生观察手中的圆柱与圆锥有什么关系,学生观察到他们是等底等高的,我的目的.就是为了深化学生对这一个条件的认识。紧接着学生开始尝试用学具研究圆柱与圆锥体积的关系。当他们一切进行的都很顺利的时候,有一个小组突然提出用“圆柱向圆锥里倒水也是可以的。”话音刚落,另一个小组的学生马上说道:“那样很麻烦的,还得测量出圆柱的体积,计算出来。”显然圆柱与圆锥之间的体积公式的推导过程已经牢牢的印在脑海中,这就已经达到了我所需要的效果了。

  记得有位老师曾经说过:老师说了,学生记住了,没有多久就忘了,只有动手操作了,学生记住了,形象的记忆就会产生了。让我们多创造一些动手的机会给他们吧!

《圆锥的体积》教学反思13

  一节课下来,我静心思考,有以下几点反思:

  1、一节好的课,在教学时要层次清楚,步步深入,重点突出。

  在教学“圆锥的体积”时,我首先从实物图形讲解到空间图形,采用对比的方法,不断加深学生对形体的认识。然后要学生用自己的学具动手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。

  2、一节好的课,应注意激发学生的求知欲。

  新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的.教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

  3、一节好的课,要有全体学生的积极参与,突出学生的主体作用。

  由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。

《圆锥的体积》教学反思14

  《圆锥的体积》是在学生掌握了圆锥的认识和圆柱的体积基础上教学的。教学时让学生通过实验的方法发现圆锥与等底等高的圆柱体积之间的关系,从而推导出圆锥的体积等于和它等底等高的圆锥体积的'三分之一,并能运用这个公式计算圆锥的体积,让学生从感性认识上升到理性认识。

  教学的主线是:

  提出问题—直觉猜测—实验探究—合作交流—实验验证—得出结论—实践运用。

  新课一开始,我让学生观察,先猜测圆锥的体积和圆柱体的体积什么有关?学生联系到圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习的目标,接着我让学生亲自动手实践,用自制的学具去实验圆锥和圆柱的体积关系,通过反馈4种小组的实验结果,得出只有在等底等高的情况下,圆锥的体积是圆柱体积的1/3,接着我又用多媒体课件演示,让学生再次体验这一结论。这一过程让孩子亲历教学验证,有一种水到渠成的感觉,学生自己很容易地推导出圆锥体的体积公式。

  对圆锥体积建立了鲜明的印象之后,就应用公式解决实际生活中的教学问题,起到了深化知识点的作用。教学中让学生真正成为活动的主动参与者,让学生真正的感受自己是学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。同时,在操作与实践的过程中让一些学困生也有参与的兴趣,让他们也能感受数学学习的快乐,使他们懂得他们也可以通过玩掌握到数学的知识。

  但在教学之后感觉到遗憾的是:学生动手能力太差,不能按要求制作学具,实验时出现差错;还有个别学生不能积极参与实验,自主学习、自主探究意识较差,以后在教学中应在这些地方对学生加以指导;另外,个别学生计算能力太差,计算准确率低,而且个别学困学生对于一些需要灵活判断的题目还是不能有较好的把握,从而可以看出,他们对于该体积公式的理解也只是停留在较简单和较低的层面上。同时还有一些学生在计算过程中常常忘记乘1/3,因此,以后需要加强训练。

《圆锥的体积》教学反思15

  六年级的学生对立体图形已经有了初步的认识,因此,在教学中,我借助圆锥体和圆柱体的联系和区别,引出圆锥体的特征,进而分散了难点。在讲授体积公式时,我设计的实验环节,把学习的主动权交给了学生,学生就可以既动手又动脑,通过自己的努力总结出圆锥体的体积公式,在学习中体会到成功的喜悦。

  建构主义认为,学生的学习不是由教师向学生的单向知识传递,而是学生建构自己知识的过程。学生不是被动的信息接受者,而是一个主动探究、发现知识的研究者。基于以上的认识,我很注重让学生自主学习,通过动手制作圆锥体,培养学生的空间概念,自主探究圆锥体的计算方法,提高解决问题的能力。

  这节课为学生提供了具体的实践活动,创设了引导学生探索、操作和思考的情境,把教师变成“一位顾问”,“一位交换意见的`参与者”,“一位帮助发现矛盾论点、而不是拿出现成真理的人”。这节课把学生推到探究新知的“第一线”,让他们自己动手、动口、动脑,主动思考问题,并在探究新知的过程中,暴露感知的矛盾和差异,把他们弄不懂的地方、错误的地方都摆在桌面上,再引导他们通过独立思考,摒弃错误,发现真理,实现由感性认识到理性认识的转化。这样,通过活动,让学生自己发现要学习的东西,能够积极地被同化,因而容易得到更深刻的理解。整节课大部分时间都是学生在操作,有独立的思考,有小组的合作学习,有猜想,有验证,有观察,有分析,有想像,使学生在尽可能大的活动空间中切实体验到数学对解决实际问题是有用的,让学生在探究的氛围中自主地学习知识,发现规律,实际应用,从而获得成功的体验。

【《圆锥的体积》教学反思】相关文章:

《圆锥的体积》教学反思06-12

圆锥的体积教学反思04-06

圆锥的体积教学反思05-20

圆锥的体积说课稿(精选)07-03

《圆锥的体积》说课稿05-25

圆锥的体积说课稿05-15

圆锥的体积说课稿03-02

小学数学《圆锥的体积》说课稿02-20

《圆锥体积》说课稿05-15

Copyright©2003-2024xianxue.com版权所有