圆锥的体积教学反思
身为一名到岗不久的人民教师,我们都希望有一流的课堂教学能力,借助教学反思可以快速提升我们的教学能力,那么教学反思应该怎么写才合适呢?下面是小编收集整理的圆锥的体积教学反思,希望能够帮助到大家。
圆锥的体积教学反思1
以前教学《圆锥的体积》时多是先由教师演示等底等高情况下的三分之一,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但效果不太好,学生对等底等高这一重要前提条件,掌握得并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我就设计了以上的教学片断:让学生自选空圆柱和圆锥研究圆柱和圆锥体积之间的关系,学生通过动手操作得出的'结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一,思维出现激烈的碰撞,这时我没有评判结果,而是让学生经历一番观察、发现、合作、创新过程,得出圆锥体积等于等底等高的圆柱体积的三分之一,这样让学生装在看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的达成完全是灵活机智地利用“错误”这一资源,所产生的效果。
在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题几经碰壁终于找到解决问题的方法,把思考问题的实际过程展现给学生看,让学生经过思维的碰撞,这样做实际上是非常富于启发性的.学习数学不仅要学会这道题的解法,而且更要学会这个解法是如何找到的。
教学不仅仅是告诉,更需要经历。真正关注学生学习的过程,就要有效利用错误这一资源,教师要勇于乐于向学生提供充分研究的机会,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验,这样,我们的课堂才是学生成长和成功的场所。
圆锥的体积教学反思2
上完《圆锥的体积》这节课,我反思了整堂课的教学,总的来说,上下来还是可以,通过学生大胆猜测圆锥的体积可能和什么形状的物体有关引入科学验证,然学生在两次倒水的过程中发现等底等高的圆柱与圆锥体积间的关系,由此引出圆锥的的体积公式V=Sh÷3,在整个教学过程中,我非常注重让学生参与教学的全过程,毕竟学生始终是活动的主体。同时引导学生用科学的态度去对待这个实验,验证自己的`猜想,整个过程注重实事求是,认真分析自己的实验结论,培养了学生科学的实验观。教学中“圆锥的体积是圆柱的1/3,它们一定等底等高”这个环节我没有预先设计的,它是课堂中随机生成的,却让学生增加了知识,通过学生的举例子,学生能发现当当圆柱和圆锥的底面积和高交叉相等时,圆锥的体积也是圆柱体的三分之一,因此这句话是错的。总而言之,这节课每个学生都经历了“猜想---实验---发现”的环节,不仅让学生获取了新知,也让学生体会到探索成功的乐趣。
但课后反应的的作业情况来看,学生基本理解了圆锥的体积,但在计算时却经常忘记除以3。一些学习困难的学生对于稍微需要灵活判断的题目还是不能有较好地把握,从而也可以看出,他们对于该体积公式的理解也只是停留在了较简单的和较低的层面,知识死记公式,不能灵活应用。
圆锥的体积教学反思3
在本节课中,通过用排水法测量外形类似于圆锥的体积(比如铅锤)不但麻烦,而且有时还不能用(比如测量麦堆的体积),体会此方法具有一定的局限性而引入新课。从面上的相似性知道圆锥的体积可能与圆柱的有关,然后经历大胆猜测、实验验证、分析实验结果,从而得出体积公式的过程。再利用适当的练习巩固公式而达到本节课的`教学目的。本节课总体感觉很顺畅,学生思维活跃。在课堂上利用实物演示,较好地引导学生思考,总结出等底等高的圆柱与圆锥之间的关系,突出了重点,突破了难点。
《数学课程标准》明确指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念。课中让学生动手分别用圆锥和圆柱盛沙,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。同时,课堂教学注重让学生自主学习,合作探究,充分发挥了学生的学习主动性,也培养了学生的创新能力。
虽然本节课达到了教学目的,取得了不错的教学效果,但也存在一些不足,由于受条件限制,学具准备不够充分;课堂语言还不够简练;在学生汇报时,没有抓住生成;没有认真研究不等底不等高的体积关系等。在以后的教学过程中一定会注意这些问题,使自己不断地进步。
圆锥的体积教学反思4
在本课的教学中,我首先让学生猜想圆锥的体积可能与它的什么有关系,再来猜想圆锥的体积可能和什么立体图形的体积有关系,通过学生自主的实验操作,探究出圆锥和圆柱在等底等高情况下的倍数关系,再通过学生的讨论,推导出圆锥的体积公式,最后应用探索出的结论解决生活中的实际问题。
一、 让学生经历猜想—实验—验证—结论的实践探索的全过程。
新课程标准明确指出,数学学习内容应当“有利于学生主动地进行观察、试验、猜测、验证、推理与交流等教学活动”数学史上许多重大的发现都离不开猜想。著名科学家牛顿说过“没有大胆的猜想就做不出伟大的发现”所以,在课初,猜想圆锥的体积与他的什么有关系,再来猜想圆锥的体积和什么图形的体积有关系,然后通过学生的动手实践验证了自己的猜想,并应用新知解决了问题。这样,即向学生渗透“猜想---验证‘ 的数学思想,有极大的调动了学生的求知欲,使学生经历了知识形成的全过程,学会了怎样学习。
二、给学生一个“合作交流、自主探究”的空间。
新课程标准明确指出,有效地数学学习活动不能单纯的依耐模仿和与记忆,动手实践、资助探索与合作交流是学生学习数学的重要方式。书学者们课程,不但需要观察,还需要试验。有些知识单凭解说是无法让学生真正理解的,只有通过试验,才能深刻领悟其中的内在奥秘。
在探究圆锥体积计算方法的学习过程中,教师把动手的主动权交给了学生,让学生动手实践,自主探索,合作交流,主动地获取知识改变了一教师讲解、师范为主的教学方式。学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。教师只是学习的组织者、引导者与合作者,是平等中的首席。在整个探究过程中,学生获得的不仅是数学知识,而且更多的.是探究学习的科学方法,探究学习的喜悦。在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
三、让学生在学习中体验数学的应用价值
人人学有价值的数学,人人都能获得必要的数学,不同人在数学商获得不同的发展,这是新课程标准的基本理念。生活知识数学化,数学知识生活化,我们所学得只是最重要应用于生活实际。为了体现“学有用的数学”这一理念,教学中,我设计了买冰淇淋、奥运火炬、“神五”等与圆锥体积有关的问题,使得数学问题生活化、趣味化。课后,又设置了在边长4分米的正方体木料里笑一个最大圆锥的问题,教室里放置一个最大圆锥的问题,使得课堂知识回归生活,引发学生思考。这样,极大的激发了学生的求知欲望和探索精神,使得数学学习不再枯燥,,而变得更精彩。
圆锥的体积教学反思5
本节课在学习圆柱的体积的基础上,再学习圆锥的体积,学生感到非常简单易懂,因此学起来并不感到困难。但教学过后,仍感到有许多不尽人意之处,当然也有许多收获。
一、收获
1、是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;
2、是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。
3、探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
4、每个学生都经历“猜想---设计实验验证---发现算法”的自主探究学习的`过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。
二、不足:
1、许多学生在计算过程中常忘记除以3,需要加强练习。
2、许多学生在计算中出现错误,计算能力不过关,口算也不过关,导致计算失败。
3、在学生进行倒沙实验时,应该事先让学生准备好充分的学具,比如,准备一个圆柱,然后做一个和圆柱等底等高的圆锥,在做一个等底不等高的圆锥或者等高不等底的,这样学生就比较明显的看出与圆柱等底等高的圆锥的体积是圆柱体积的三分之一。
4、一节好课在教学时要层次清楚,步步深入,重点突出。应注意激发学生的求知欲。要有全体学生的积极参与,突出学生的主体作用。我在这几个方面都还要加强。
圆锥的体积教学反思6
“实践出真知”,我觉得这句话讲得非常的好。对于学生的学习,我觉得也是这样。让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。特别是在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。在教学圆锥的体积时,我感悟特深刻。
以前教学圆锥的体积后,学生在实际运用公式时容易出错误的地方还是和往届一样,圆锥的体积=等底等高圆柱体积的三分之一,这个三分之一,在计算的时候经常出现遗漏。
怎样让学生自己探究出圆锥的体积公式,并且时时记住那个容易被人遗忘的三分之一呢?我这次把学习的主动权交给了学生,让每个学生都经历“提出猜测--设计实验--动手操作--得出公式”的自主探究学习的过程,我让学生拿出自己的学具——等底等高的圆柱和圆锥,走出课堂,深入实践,到操场上去装沙子,到水池边去装水,看几个圆锥的体积才能把圆柱装满。在我适当的引导下,让学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。教学中我感到学生真正地成为了学习的主人,我没有牵着学生走,只是为他们创设了一个猜想圆锥体积方法的情境,让学生在猜测中找到验证的方法,并且通过动手操作验证自己的.猜测。最后得出圆锥体积的计算方法,激发了他们主动探究的欲望。
推导公式时,我没有代替学生的操作,始终只以组织者、引导者与合作者的身份参与其中,使学生与学生之间,教师与学生之间互动起来,在这种形式下,学生运用独立思考、合作讨论、动手操作等多种方式进行了探索。另外,为了突出“等底、等高”这个条件的重要性,我巧置陷阱,我还特意安排了一组等底不等高,一组不等底也不等高的圆柱和圆锥,结果学生的实验结论和其他组的不一致,这时候就出现了争论,这时,我时机引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。相信今天通过同学们自己的动手体验,对圆锥的体积计算方法印象深刻,只有自己经历了才会牢牢记住!
圆锥的体积教学反思7
该学习“圆锥的认识和体积”这部分知识了,想到在学生的生活中,纯圆锥的物体并不多见,所以这样安排本部分内容的教学。
第一节课带领学生做圆锥,画圆——剪圆——再剪出圆心角不同的扇形——把两条半径无缝隙的粘住,放在桌上,一个圆锥成型了,如果你想粘上底面也可以,可是得知道底面的半径啊!(拓展怎样知道扇形的半径和圆心角的度数,求出圆锥底面半径的'大小)
学生自己做出来的圆锥,对它的认识肯定是比较深刻的——圆锥由一个底面和一个曲面围城,底面是圆,侧面展开是一个扇形,还有强调对圆锥的高的理解。直角三角形沿一条直角边所在的直线旋转可以得到一个圆锥,让学生试一试,想象一下。
第一节课圆锥的认识,因为加上了让学生动手制作这一环节,教学效果出奇的好,也为下一节课做好的铺垫。
圆锥的体积教学反思8
圆锥的体积是学生在掌握了圆锥的认识和圆柱的体积的基础上教学的。是小学几何初步知识教学的重要内容。本节教学分两个层次进行,一是推导圆锥体积计算公式,二是运用公式求圆锥的体积。在教学时,主要运用了探究式的教学方法进行教学,收到了较好的效果,现总结以下几点做法:
一、大胆猜测,培养猜测意识。
假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,在教学中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,再大胆猜想它们的体积可能会有什么样的关系?”这样设计,事实证明不仅仅是能够培养学生的猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的欲望强烈,为本节课的成功教学奠定了基础。
二、操作验证,培养科学的实验观。
数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式.教学中,使学生通过自主探究实验得出结论:圆锥的体积是与这个圆锥等底等高的圆柱体积的三分之一。从而总结出圆锥体积的计算公式:V=1/3Sh。
教学圆锥的体积计算时先分组做实验,在空圆锥里装满沙子,然后倒入空等底等高的圆柱中,从倒的次数中观察到怎样的现象呢?两者体积之间有怎样的关系。我们将空圆锥里装满沙子,然后倒入空圆柱中,三次正好装满。说明圆锥的体积是圆柱的三分之一。然后用不等底等高的圆锥和圆柱所得的情况与以上不同。最后得到一个原理等底等高。圆锥的体积等于和它等底等高的圆柱体积的三分。
《圆锥的体积》的教学都是先由教师演示等底等高情况下的三分之一,再让学生去验证,最后教师通过对比实验说明不等底等高的差异,而在以上教育中却不然,先采用学生做实验的方法,让学生亲自实践,在实际中懂得其中的道理,用一个等底等高圆柱和圆锥,让学生分组进行实际操作,使学生清楚的知道其中的知识点,明白了圆锥与圆柱之间的体积关系,从而是学生发现其中的数学原理,而且有意地将实验的环节复合,在看似混乱无序的实践中,增加了学生对实验条件的辨别及信息的批判,同时这也是这堂课需要解决的`重点和难点。在整个教学过程中,重视让学生参与教学的全过程,学生始终是活动的主体,我则是这一活动的组织者、指导者、和参与者。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己操作实验出现了和别人不太一样的结论的原因,培养学生科学实验观。学生学的主动,经历了一番观察、发现、合作、探究的过程,既能达到圆满地推导出了圆锥的体积公式,又使学生的实践能力得到发挥。
总之,这节课,每个学生都经历了“猜想———实验———发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们体验到了探究成功的喜悦,进行了探究失败的深刻反思,有利于从小树立科学的实验观。思考:如果长期在这样的探究中去学习知识,学生就会变成有思想、会思考、会研究、会学习的人。
圆锥的体积教学反思9
《圆锥的体积》教学设计与反思 教学目的:使学生初步掌握圆锥体积的计算公式。
并能运用公式正确地计算圆锥的体积,发展学生的空间观念。
教学难点:圆锥的体积应用
学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件
教学时间:一课时
教学过程:
一、复习
1、圆锥有什么特征?(课件出示)
使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。
二、导人新课
出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。 板书课题:圆锥的体积
三、新课
1、教学圆锥体积的计算公式。
师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?
指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。
师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?
先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”
然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
学生分组实验。
汇报实验结果。先在圆锥里装满水,然后倒入圆柱。正好3次可以倒满。 圆柱里装满沙子,倒入与他等底等高的圆锥,三次正好倒完。
接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒几次正好把圆柱装满?
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
多找几名同学说。
板书:圆锥的体积=1/3 ×圆柱体积
师:圆柱的体积等于什么?
生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢?
引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积= 1/3 ×底面积×高 师:用字母应该怎样表示?
然后板书字母公式:V=1/3 Sh
师:在这个公式里你觉得哪里最应该注意?
教学例1一个圆锥的零件,底面积是19平方厘米,高是12厘米。这个零件的'体积是多少?
1/3×19×12=76((立方厘米))
答:这个零件体积是76立方厘米。
做一做:课件出示,学生回答后,教师订正。
1、一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?
2、已知圆锥的底面半径r和高h,如何求体积V?
3、已知圆锥的底面直径d和高h,如何求体积V?
4、已知圆锥的底面周长C和高h,如何求体积V?
5、一个圆锥的底面直径是20厘米,高是9厘米,它的体积是多少?
例2在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克) 判断:课件出示,学生回答后,教师订正。
1、圆柱体的体积一定比圆锥体的体积大( )
2、圆锥的体积等于和它等底等高的圆柱体积的 ( ) 。
3、正方体、长方体、圆锥体的体积都等于底面积×高。 ( )
4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米( )
四、教师小结。
这节课我们学习了哪些知识?你还有什么问题吗?
五、作业。课本练习
六、板书
圆柱的体积=底面积×高
字母公式:V圆柱= S·h
圆锥的体积=圆柱的体积=底面积×高
字母公式:V圆锥= S·h
教学反思
这节课是六年级圆柱和圆锥的内容,主要是求圆锥体的体积。就小学现有的知识,把圆锥体积转化为体积相等的其它物体有些困难。因此,教学圆锥体积公式采用的方法与圆柱相同,采用“转化”的思想。因而这节课首先复习圆柱的体积公式及推导方法,让学生从图画直观上感受——圆锥体的体积比等底等高的圆柱体体积小。在此直观的基础上,让学生亲自动手实验,这里除了培养学生的自主探究、发现的能力,还让学生在操作实验的过程中,各种能力得到锻炼,同时还让学生在实验中感受数学的严密性,感受数学的内在魅力,激发学生对数学的热爱。学生学识的关键还在于会不会运用,因而,在学生探索好后,让学生用自己探索到的结论,解决生活中的一些实际问题,让他们真正感受到数学的用处——生活中处处离不开数学。最后让学生谈谈收获,巩固这节课的重点,加深印象。
圆锥的体积教学反思10
以前教学圆锥的体积时,多是先由教师演示等底等高情况下的圆柱体积的三分之一正好是圆锥的体积,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但收到的效果不佳。
学生对“等底等高”这一重要条件掌握并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我在六年级(6)班设计了这样的教学片断:让学生自选空圆柱和圆锥,研究圆柱和圆锥体积之间的关系,学生通过动手操作,得出的结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一的。
思维也出现了激烈的`碰撞。这时,我没有评判结果,而是让学生经历一番观察、发现、合作、创新的过程,得出圆锥体积等于和它等底等高圆柱体积的三分之一。这样让学生置身于看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是灵活机智地利用“错误”这一资源所产生的效果。
在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题,让他们去几经碰壁,终于找到解决问题的方法。把思考问题的实际过程展现给学生,让学生经历思维的碰撞。这样做实际上是非常富于启发性的。学生做数学题不仅要学会这道题的解法,而且更要懂得这个解法的来历。
教学不仅仅是告诉,更需要经历。真正关注学生学习的过程,有效利用“错误”这一资源,勇于、乐于为学生创造时机,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验。这样,我们的课堂才是学生成长和成功的乐园!
圆锥的体积教学反思11
《圆锥的体积练习课》教学反思正如探究圆柱体积计算方法的教学过程一样,学生不再是实验演示的被动观看者,而是参与操作的主动探者,是学习的主人。
在整个教学过程中,学生获得的不仅是鲜活的数学知识,同时也获得了更多探究学习的科学方法,探究成功的喜悦以及探究失败后的深刻反思。在这样的学习中,学生会逐步变得会思考,逐渐发现自身的价值。同时,在操作与实践的过程中,我让一些学习有困难的学生参与其中,使他们感受到学习数学的快乐,并使他们懂得可以通过玩学习到数学知识。
这是本节课在教学组织上的优点所在。对于教学内容的设计,我通过提问引入圆锥的体积,生动而形象地揭示了本节课的课题。对于学生易混淆的.知识点,我通过实物展示、语言强调、练习等方式,让学生掌握只有当圆柱和圆锥等底、等高时,圆柱的体积才是圆锥的3倍这一知识点。
对于圆锥的形成过程,我也设计了一个习题让学生自行思考和感受,并通过比较计算结果发现沿一个直角三角形不同直角边快速转动后所得到的圆锥的区别与联系,使学生在对比中进一步理解并掌握知识。
圆锥的体积教学反思12
圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。因此,我有针对性地设计、制作了本节课的辅助教学课件,既突出重点、突破难点,又激发学生的学习兴趣,优化教学过程,提高课堂教学质量。
1、复习迁移,做好铺垫
由于圆锥体的体积是在学生学过圆柱体的体积的基础上安排教学的,为了让学生回忆圆柱体的体积计算公式,以便为知识的迁移和新知识的学习做好铺垫,我制作了一张图文并茂的图文片向学生展示了一个圆柱体图形,并在图形下面用醒目的文字向学生提出问题:这是什么形体?它的体积应怎样计算?这样一张集文字、图形、声音于一体的图文片,很容易引起学生注意,营造学习气氛。
2、创设情境,引入新知
数学来源于生活,我取材于生活以创设情境,使教学过程与生活实际密联系起来,我制作了一张图文并茂的图文片向学生展示了晒谷场上一堆圆锥形的谷子,并在显眼的位置向学生巧设问题:这堆谷成什么形体?你们能求出这堆谷的体积吗?这样,激发了学生的求知欲望,把学生引入到新课探索的活动中。
3、实验操作,推导公式
圆锥体积的推导,是本节课的教学难点,为了让学生直观感知圆锥的体积与它等底等高的圆柱的体积的关系。首先让学生用工具做实验,初步感知,再呈现我制作的图文片向学生演示:用圆锥装满水倒入和它等底等高的圆柱里的过程。并在动画下面巧设问题:用圆锥装满水倒入和它等底等高的空圆柱里,倒几次正好倒满?每次水的高度是圆柱高度的几分之几?有层次的教学设计,丰富多彩的教学活动,充分体现以教师为主导,以学生为主体的教与学的双边活动。学生通过认真操作实验,观察思考,都明白了圆锥的体积等于和它等底等高的圆柱体积的1/3,从而推导出圆锥体积的计算公式。
4、自学尝试,解惑答疑
为了提高学生解决实际问题的能力,我把课本上的例1制成一张图文片,配上悠闲的乐曲,让学生尝试解答。试做时,我则进行巡视,如有问题,个别辅导,接着指名回答。这样,能够把较多的时间留给学生,培养学生的自学能力,使他们从中体验到学习的成功的乐趣。
圆锥的体积教学反思
本节课《圆锥的体积》以谈话法、实验法为主,讨论法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。小学阶段学习的几何知识是直观几何。小学生学习几何知识不是靠严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识,而且在教学中我注重如何有效的引导学生探究。
例如,在上课开始,我是让学生回忆圆柱体积公式的推导过程,
让学生猜测圆锥的体积也可以借助我们已经学过的图形来验证,培养学生的迁移类推能力。到学生猜测出用圆柱的体积来帮助研究圆锥时,再进一步让学生猜测圆柱与圆锥之间的关系,激起学生的学习兴趣,然后马上让学生自己以小组为单位去验证自己的'猜测是否正确,让每个学生都经历一次探究学习的过程。每个学生都经历了“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,按自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。
在探究圆锥体积计算方法的学习过程中,学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,获得更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。而且在探究出圆锥体积公式的基础上,再让他们想办法计算出他们小组实验用的圆锥的体积,又一次给了学生探究的空间,使他们对不光能得出圆锥的体积公式,而且知道怎么应用它。
充分发挥了学生的个性潜能。在学习中充分发挥学生的潜能,让他们按自己的观察进行猜测估计,按自己的设想操作学习,对自己学习情况进行总结,反思,在全体学生思维火花的相互碰撞中,出现了验证等底等高的圆锥体和圆柱体体积的方法。涌现出了对圆锥体体积计算公式中“1/3”的不同理解,实现了学习策略的多样化,丰富了学生的学习资源。
圆锥的体积教学反思13
让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。
《圆锥》这节课,其教学目标是:
1)、认识圆锥,了解圆锥的底面、侧面和高;
2)、掌握圆锥高的测量方法;
3)、圆锥体积公式的推导;
4)、通过例一例二使学生会应用圆锥公式进行简单的计算。
教学中,学生通过实际触摸,动手测量、探索推导等活动,前三个教学目标在轻松快乐的氛围中顺利完成。在公式应用这个环节,考虑到学生已经预习过例题,就把例二教学做了改动给出一圆锥形麦堆,底面直径是20分米,高是14分米,每立方米小麦重0.375千克,求这堆小麦重多少千克?让学生自主练习,本以为应用公式很快就能解决的一个问题,可学生算了好长时间还没有完成。原来我在改动数字时没有考虑到圆锥体积公式的1/3和3。14给出的直径和高与1/3都不能约分,使本应该巩固公式应用的目标辩词了复杂的`小数计算,浪费了大量的时间,课后习题没有处理完就匆匆结束了这节课。课后反思数学既活又严谨,看似一个简单数字的出示也要付出周密的策划。一节简单流畅的好课,并不是随手拈来的,只要用心的去思考,统筹安排,关注到每个细节才能得到。
教学需要学习,教学更需要反思,在反思中进步,在反思中提高。
圆锥的体积教学反思14
《圆锥的体积》是在学生掌握了圆锥的认识和圆柱的体积基础上教学的。教学时让学生通过实验的方法发现圆锥与等底等高的圆柱体积之间的关系,从而推导出圆锥的体积等于和它等底等高的圆锥体积的三分之一,并能运用这个公式计算圆锥的体积,让学生从感性认识上升到理性认识。
教学的主线是:
提出问题—直觉猜测—实验探究—合作交流—实验验证—得出结论—实践运用。
新课一开始,我让学生观察,先猜测圆锥的体积和圆柱体的体积什么有关?学生联系到圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习的目标,接着我让学生亲自动手实践,用自制的学具去实验圆锥和圆柱的体积关系,通过反馈4种小组的实验结果,得出只有在等底等高的情况下,圆锥的体积是圆柱体积的1/3,接着我又用多媒体课件演示,让学生再次体验这一结论。这一过程让孩子亲历教学验证,有一种水到渠成的感觉,学生自己很容易地推导出圆锥体的体积公式。
对圆锥体积建立了鲜明的印象之后,就应用公式解决实际生活中的教学问题,起到了深化知识点的作用。教学中让学生真正成为活动的主动参与者,让学生真正的感受自己是学习的主人。在整个学习过程中,学生获得的不仅是新活的'数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。同时,在操作与实践的过程中让一些学困生也有参与的兴趣,让他们也能感受数学学习的快乐,使他们懂得他们也可以通过玩掌握到数学的知识。
但在教学之后感觉到遗憾的是:学生动手能力太差,不能按要求制作学具,实验时出现差错;还有个别学生不能积极参与实验,自主学习、自主探究意识较差,以后在教学中应在这些地方对学生加以指导;另外,个别学生计算能力太差,计算准确率低,而且个别学困学生对于一些需要灵活判断的题目还是不能有较好的把握,从而可以看出,他们对于该体积公式的理解也只是停留在较简单和较低的层面上。同时还有一些学生在计算过程中常常忘记乘1/3,因此,以后需要加强训练。
圆锥的体积教学反思15
《圆锥的体积》是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。学生感到非常简单易懂,因此学起来并不感到困难。
新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,加深学生对形体的认识。然后让学生动手实验,以小组合作学习的方式让每个学生都能参与到探究中去,学生在实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。
由于本节课活动单设计合理,问题比较精细,学生能在小组合作学习的过程中,自主设计实验过程,从而选择合适的学具来做实验,在比较、分析中得出圆锥的体积公式,取得了较好的效果。具体分析如下:
一、收获:
1、探究圆锥体积计算方法的学习过程,学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
2、每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教学案的引导下学生能在小组合作学习的过程中,自主设计实验过程,从而选择合适的学具来做实验,在比较、分析中得出只有等底等高的圆柱和圆锥才有这样的关系,从而加深了等低等高的印象,进而得出圆锥的体积公式,让每个学生都经历一次探究学习的过程。
3、学生在展示中获得了成功的喜悦,体验了探究的乐趣。
自采用“活动单导学”教学模式以来,学生敢说、愿说、乐说,学生的语言能力及叙述问题的条理性、层次性有了明显的提高。在本节课中学生能够根据教学案中的问题进行思考、讨论,从而大胆展示,能够把动手实践和语言表达结合在一起,从而清楚地展示了圆锥的体积探究的全过程。这点值得充分的肯定。
二、不足:
1、。实验教材具有现成性,学习用具具有一定的'实际限制,使学生探索思考的空间较小,不利于学生思维的充分发展。
2、学生在实验时要求不高,导致存在着误差。实验失败。
3、学习困难的学生对于一些需要灵活判断的题目还是不能有较好的把握,从而也可以看出,他们对于该体积公式的理解也只是停留在了较简单的和较低的层面。在与圆柱的体积的联系中,思维的灵活度不够。后来也感觉他们有出现一点点厌学的情绪,这是因为在最后他们把自己当成了倾听者。缺少了一种主动思维和思考的愿望。
三、 措施:
1、让学生养成良好的学习习惯,做题时认真仔细。
2、鼓励学生利用课余时间间动手做一些学具,不仅会增强学生的动手操作能力,而且可以用到学习中去。
3、教师要认真的去设计教学案,把每一个问题设计精细,小组合作学习才能真正发挥优势。
【圆锥的体积教学反思】相关文章:
《圆锥的体积》教学反思06-12
《圆锥的体积》教学反思04-06
圆锥的体积教学反思05-20
圆锥的体积说课稿(精选)07-03
《圆锥的体积》说课稿05-25
圆锥的体积说课稿05-15
圆锥的体积说课稿03-02
小学数学《圆锥的体积》说课稿02-20
《圆锥体积》说课稿05-15