[推荐]高一数学必修二知识点总结
总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,通过它可以正确认识以往学习和工作中的优缺点,不如我们来制定一份总结吧。那么你知道总结如何写吗?下面是小编整理的高一数学必修二知识点总结,仅供参考,欢迎大家阅读。
几何体和体积具有柱、锥、台、球的结构特征
(1)棱柱:
几何特征:两个底面是平行于对应边的全等多边形;侧面和对角为平行四边形;侧边平行相等;平行于底面的截面是与底面相等的多边形.
(2)棱锥
几何特征:侧面和对角为三角形;平行于底面的截面与底面相似,相似比等于从顶点到截面距离和高比的平方.
(3)棱台:
几何特征:上下底面是相似的平行多边形侧面是梯形侧边交给原棱锥的顶点
(4)圆柱:定义:以矩形一侧所在的直线为轴旋转,其侧旋转
几何特征:底面为全等圆;母线与轴平行;轴垂直于底圆的半径;侧展图为矩形.
(5)圆锥:定义:旋转轴以直角三角形的直角边为旋转轴,旋转一周
几何特征:底面为圆;母线交于圆锥的顶点;侧展图为扇形.
(6)圆台:定义:旋转轴以垂直直角梯形和底部腰部为旋转轴,旋转一周
几何特征:上下底面有两个圆;侧母线交给原圆锥的顶点;侧展图为弓形.
(7)球体:定义:以半圆直径直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:球的截面是圆的;球面上任何一点到球心的距离等于半径.
2.空间几何三视图
定义三个视图:正视图(光线从几何前面投影到后面);侧视图(从左到右)
俯视图(从上到下)
注:正视图反映物体的高度和长度;俯视图反映物体的长度和宽度;侧视图反映物体的高度和宽度.
3.空间几何直观图-斜二测绘法
斜二测绘法特点:与x轴平行的线段仍与x平行,长度不变;
与y轴平行的线段仍与y平行,长度为原来的一半.
4.柱、锥、台的表面积和体积
(1)几何体的表面积是几何体各个面积的和.
(2)特殊几何体表面积公式(c底部周长,h为高,为斜高,l为母线)
(3)柱、锥、台的体积公式
总结高中数学必修二知识点:直线和方程
(1)直线倾斜角
定义:x轴向和直线向上方向之间的角称为直线倾斜角.特别是当直线与x轴平行或重合时,我们将其倾斜角设置为0度.因此,倾斜角的值范围为0°≤α<180°
(2)直线斜率
定义:倾斜角不是90°直线,倾斜角的正切称为直线的斜率.直线斜率常用k表示.即.斜率反映了直线和轴的倾斜程度.
当时,;当时,;当时,.
两点以上的直线斜率公式:
注意以下四点:(1)当时公式右侧毫无意义,直线斜率不存在,倾斜角90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可以通过直线上两点的坐标直接获得,而不是倾斜角;
(4)直线上两点的坐标先求斜率可以获得直线的倾斜角.
(3)直线方程
点斜:直线斜率k,且过点
注:当直线的斜率为0时°时,k=直线方程为y=y1.
当直线的斜率为90时°当直线斜率不存在时,其方程不能用点斜表示.但是l上的每一个横坐标都等于x所以它的方程是x=x1.
斜截:,直线斜率为k,Y轴上直线的截距为b
两点式:()直线两点,截矩式:
直线与轴交点,与轴交点,即与轴和轴的截距.
一般式:(A,B不全为0)
注:各种适用范围的特殊方程,如:
(4)平行于x轴的直线:(b为常数);与y轴平行的直线:(a为常数);
(5)直线系方程:即具有一定共同性质的直线
(一)平行直线系
直线系统平行于已知直线(不全为0):(C为常数)
(二)垂直线系
直线系垂直于已知直线(不全为0的常数):(C为常数)
(3)直线系过定点
()直线系斜率为k:,直线过定点;
()有两条直线,交点的直线系方程为
(参数)直线不在直线系中.
(6)两条直线平行垂直
注:利用斜率判断直线的平行和垂直时,应注意斜率的存在.
(7)两条直线的交点
相交
交点坐标是方程组的一组解.
方程组无解;方程组有无数的解和重叠
(8)两点间距公式:平面直角坐标系中的两点
(9)点到直线距离公式:点到直线的距离
(10)两平行直线距离公式
在任何一条直线上任取一点,然后转化为点到直线的距离求解。
【高一数学必修二知识点总结】相关文章:
高一数学必修二知识点总结09-02
高一数学必修二知识点归纳总结10-18
化学高一必修二知识点总结09-04
高一历史必修二知识点总结11-06
高一政治必修二知识点总结10-21
高一数学必修一知识点总结05-19
高二必修二数学知识点总结10-15
高一物理必修二知识点总结09-07
高一必修二物理复习知识点总结08-26