当前位置:贤学网>范文>工作总结> 高中函数总结

高中函数总结

时间:2024-10-08 14:03:50 工作总结 我要投稿
  • 相关推荐

高中函数总结

  总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它可以有效锻炼我们的语言组织能力,因此,让我们写一份总结吧。我们该怎么写总结呢?下面是小编为大家整理的高中函数总结,欢迎大家分享。

高中函数总结

高中函数总结1

  过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。

  对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

  对数函数

  对数函数的.一般形式为,它实际上就是指数函数 的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

  右图给出对于不同大小a所表示的函数图形:

  可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

  (1)对数函数的定义域为大于0的实数集合。

  (2)对数函数的值域为全部实数集合。

  (3)函数总是通过(1,0)这点。

  (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

  (5)显然对数函数无界。

高中函数总结2

  特别地,二次函数(以下称函数)y=ax^2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

  此时,函数图像与x轴有无交点即方程有无实数根。

  函数与x轴交点的横坐标即为方程的根。

  二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  解析式顶点坐标对称轴

  y=ax^2(0,0) x=0

  y=a(x-h)^2(h,0) x=h

  y=a(x-h)^2+k(h,k) x=h

  y=ax^2+bx+c(-b/2a,[4ac-b^2]/4a) x=-b/2a

  当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到.

  当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

  当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

  抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.

  抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=

  (a≠0)的两根.这两点间的距离AB=|x?-x?|

  当△图象与x轴只有一个交点;

  当△<图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<

  抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的'取值.

  用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a≠0).

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

  二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

高中函数总结3

  一、函数的定义域的常用求法:

  1、分式的分母不等于零;

  2、偶次方根的被开方数大于等于零;

  3、对数的真数大于零;

  4、指数函数和对数函数的底数大于零且不等于1;

  5、三角函数正切函数y=tanx中x≠kπ+π/2;

  6、如果函数是由实际意义确定的解析式,应依据自变量的.实际意义确定其取值范围。

  二、函数的解析式的常用求法:

  1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法

  三、函数的值域的常用求法:

  1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法

  四、函数的最值的常用求法:

  1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法

  五、函数单调性的常用结论:

  1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数

  2、若f(x)为增(减)函数,则-f(x)为减(增)函数

  3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。

  4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

  5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

  六、函数奇偶性的常用结论:

  1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)

  2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

  3、一个奇函数与一个偶函数的积(商)为奇函数。

  4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

  5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。

高中函数总结4

  1. 函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(-x) ;

  (2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2. 复合函数的有关问题

  (1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3.函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;

  4.函数的周期性

  (1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;

  5.

  方程k=f(x)有解 k∈D(D为f(x)的值域);

  6.

  a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

  7.

  (1) (a0,a≠1,b0,n∈R+);

  (2) l og a N= ( a0,a≠1,b0,b≠1);

  (3) l og a b的符号由口诀“同正异负”记忆;

  (4) a log a N= N ( a0,a≠1,N

  8. 判断对应是否为映射时,抓住两点:

  (1)A中元素必须都有象且唯一;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  10.对于反函数,应掌握以下一些结论:

  (1)定义域上的单调函数必有反函数;

  (2)奇函数的'反函数也是奇函数;

  (3)定义域为非单元素集的偶函数不存在反函数;

  (4)周期函数不存在反函数;

  (5)互为反函数的两个函数具有相同的单调性;

  (5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

  11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

  12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

  13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

高中函数总结5

  “函数的单调性”问题既是函数概念的延续与拓展,又是后续指数函数、对数函数、三角函数研究的基础,在本节课的讲解中,还渗透了探索发现、数形结合等数学思想方法。为此我们从熟悉的实际生活出发,结合熟悉的一次函数、二次函数的图象,为学生学习函数的单调性创设教学情境,拉近与未知知识的距离,调动积极性,增加参与度。在学生自主探索的'过程中,教师可给予一定的引导,如设置一些问题:指出函数图象变化的趋势,数学当中如何描述,如何用符号化的数学语言来刻画,如何给出严格的定义,定义中哪些是值得注意和重视的,怎样利用定义来证明函数的单调性等等,来引导学生更好、更深刻、更准确的理解新的知识。当然还必须结合一些典型例题来巩固新知,尤其是一些注意点,及时纠正才能不致错误根深蒂固。

  函数的单调性的定义是对函数图象特征的一种数学描述,它经历了由图象直观感知到数学符号语言描述的一个过程,充分反映了数学的理性精神,其中还结合了数学思想方法的渗透。这在我们的教学过程中需要长期坚持。

  参加了高中数学“函数单调性”教学研讨的网络学习后,有以下几点想法与思考,流露出来与同行们一起探讨:

  (1)在教学过程中学生经常会有不同见解产生、有新问题“萌生”、甚至有错误频繁出现,往往与教师的教学预设合不上拍,让教师出乎意料.然而在这些课堂现象中恰恰存在着生长性,潜藏着稍纵即逝的生成点,是值得引起重视的宝贵教学资源.现代教学理论认为:“课堂教学不在于教师讲得如何精彩,重要的是能适时激起学生的认知冲突,制造一种‘不和谐’,通过互动生成教学过程.”这种互动会让教师、学生双方都面临知识的、智慧的挑战,从而更能促进教与学的有效相长。

  (2)当预设与生成有出入时,教师不能粗暴地忽略学生的“草根”观念.有时若用“这个问题我们下课再讨论”等言语来搪塞学生将会失去难得宝贵的一次探索机会.认真倾听学生的发言,为课堂营造一种宽松氛围,用心来呵护生成、善待意外,是师者修养之一.只有当你静静蹲下来时,你才能走进孩子的世界,知道在他们的高度能看见什么,才能和孩子有效地沟通和交流.在平时的教学活动中,我们却很少注意到这点.(3)课堂是学生学习、成长的第一摇篮,在课堂教学中采取什么样的教学思想指导课堂教学,对学生数学素养的形成起着至关重要的作用.只有关注课堂生成、正确处理课堂生成,为学生适时搭建探索的平台,课堂教学才能焕发生命力、绽放思维的火花。

高中函数总结6

  这节课的学习中,我把教学流程设计为四个阶段:创设情境,引入课题;归纳探索,形成概念;掌握证法,适当延展;归纳小结,提高认识。我这样设计主要从以下几个方面考虑的:

  1、教学内容在教材中的地位和作用

  首先,从单调性知识本身来讲。学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性。高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础.

  其次,从函数角度来讲。函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念。函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程。因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据。

  最后,从学科角度来讲。函数的单调性是学习不等式、极限、导数等其它数学知识的重要基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材。

  2、教学中出现的重点和难点

  对于函数的单调性,学生的认知困难主要在两个方面:

  首先,要求用准确的数学符号语言去刻画图象的上升与下降,把对单调性直观感性的认识上升到理性的高度,这种由形到数的翻译,从直观到抽象的转变对高一的学生来说比较困难。

  其次,单调性的`证明是学生在函数学习中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的

  根据以上的分析和教学大纲对单调性的教学要求,本节课的教学重点是函数单调性的概念,判断、证明函数的单调性;难点是引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性。3、教学目标的要求

  1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法。

  2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.

  3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯;让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程。

  为了达成教学效果我从以下几个方面设计了教学方法以及学法指导:

  1、教学方法

  本节课是函数单调性的起始课,根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲授,学生探究学习的教学方法。教学过程中,根据教材提供的线索,安排适当的教学情境,让学生展示相应的数学思维过程,使学生有机会经历数学概念抽象的各个阶段,引导学生独立自主地开展思维活动,深入探究,从而创造性地解决问题,最终形成概念,获得方法,培养能力。

  2、教学手段

  教学中使用了多媒体投影和计算机来辅助教学.目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.

  3、学法指导

  首先引导学生回顾判断,证明函数单调性的方法和步骤;然后引导学生回顾知识探究过程中用到的思想方法和思维方法,如数形结合,等价转化,类比等,重点强调用符号语言来刻画图形语言,用定量分析来解释定性结果;同时对学习过程作必要的反思,为后续的学习做好铺垫。

  这节课教学完成后对我的教学预设与教学生成产生了以下启发:

  函数单调性是函数的一个重要性质,学生是头一次接触,陌生感很强。函数单调性,单调区间的概念掌握起来有一定困难,特别是增函数、减函数的定义很抽象,学生很难理解,这样增加学生的负担,不利于学生学习兴趣的激发。

  因此,在教学的整个过程中,弱化抽象概念的讲解,从具体函数的图像分析入手,使学生对增、减函数有一个直观的印象。进一步,通过分析函数图像的变化趋势,启发学生归纳总结出、增、减函数中函数值与自变量之间的变化规律,是学生会熟练的通过函数的图像来判定一个函数是增函数、还是减函数。整堂课下来,使学生会通过函数来判断函数单调性这一目标基本上达到,学生课堂反应积极、活泼。但还存在了很多的问题,比如最大的问题就是学生探究还没有放开,教师也讲多了。在以后的教学中多注意从学生的已有知识和生活经验出发,围绕知识目标展开新知识出现的情景,丰富学生的情感体验,在知识应用方面,应强调数学走向生活,解决具有现实意义的生活问题,培养学生的数学建模能力。

高中函数总结7

  (一)映射、函数、反函数

  1.对应、映射和函数的概念既有共性又有差异。映射是一种特殊的对应,函数是一种特殊的映射.

  2.函数概念应注意以下几点:

  (1)掌握构成函数的三个要素,判断两个函数是否为同一函数.

  (2)掌握三种表示方法-列表方法、分析方法和图像方法,可以根据实际问题寻求变量之间的函数关系,特别是分段函数的分析方法.

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g复合函数,其中g(x)为内函数,f(u)为外函数.

  3、求函数y=f(x)反函数的一般步骤:

  (1)确定原函数的值域,即反函数的定义域;

  (2)由y=f(x)分析式求出x=f-1(y);

  (3)将x,y习惯性表达式的反函数对换y=f-1(x),并注明定义域.

  注意①:对于分段函数的反函数,首先在各段找出反函数,然后合并在一起.

  ②熟悉应用,求f-1(x0)值,合理利用这个结论,可以避免求反函数的过程,从而简化操作.

  (2)函数的分析和定义域

  1.函数及其定义域是一个不可分割的整体,没有定义域的函数不存在。因此,要正确写出函数的分析,必须在找出变量之间的相应规则的同时找出函数的定义域.求函数的定义域一般有三种:

  (1)有时一个函数来自一个实际问题,当自变量x具有实际意义时,应结合实际意义考虑定义域;

  (2)已知函数的解析式要求其定义域,只要使解析式有意义.如:

  ①分母不得为零;

  ②偶次方根被开方数不小于零;

  ③对数函数的真数必须大于零;

  ④指数函数和对数函数的底数必须大于零,不等于1;

  ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.

  需要注意的是,当一个函数的分析类型由几个部分组成时,定义为自变量值的公共部分(即交叉).

  (3)已知一个函数的定义域,要求另一个函数的定义域主要考虑定义域的深刻含义.

  已知f(x)的定义域是[a,b],求f[g(x)]定义域是指满足a≤g(x)≤bx的值范围已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)定义域,即g(x)的值域.

  2.求函数的分析一般有四种情况

  (1)根据实际问题建立函数关系时,必须引入适当的变量,根据数学知识寻求函数的分析.

  (2)有时题设给出函数特征,求函数的分析可以采用待定系数法.例如,函数是一个函数,可以设置f(x)=ax b(a≠0),其中a,b为待定系数,根据题设条件列出方程组a,b即可.

  (3)如果题设给出复合函数f[g(x)]在表达式中,可以用换元法求函数f(x)此时,必须找出表达式g(x)值域相当于求函数的定义域.

  (4)若已知f(x)这个等式除了满足某个等式f(x)除未知量外,还有其他未知量(如未知量)f(-x),等),必须根据已知等式构建其他等式组成方程组,并使用解方程组法找f(x)的表达式.

  (3)函数的值域和最值

  1.函数值域取决于定义域和相应规则。无论采用何种方法寻求函数值域,都应首先考虑其定义域。寻求函数值域的常用方法如下:

  (1)直接法:又称观察法。对于结构相对简单的函数,函数的分析应用不等式的性质可以直接观察到.

  (2)换元法:使用代数或三角换元将给出的复杂函数转换为另一个简单的函数再求值域。如果函数分析包含根式,则在根式中使用代数换元,在根式中使用代数换元。.

  (3)反函数法:使用函数f(x)与其反函数f-1(x)原函数的值域是通过求反函数的定义域获得的(a≠这种方法可以获得0)函数值域.

  (4)配方法:可以考虑与二次函数或二次函数相关的函数的值域.

  (5)不等式法求值域:使用基本不等式a b≥[a,b∈(0, ∞)]可以要求某些函数的值域,但要注意一正二定三相等的条件,有时需要平方等技能.

  (6)判别法:把y=f(x)变形为x的一元二次方程,使用△≥0”求值域.题型的特征是分析式包含根式或分式.

  (7)使用函数的单调性求值域:当函数确定函数在其定义域(或某个定义域的子集)的单调性时,可以通过单调性法找到函数的值域.

  (8)数形结合法求函数的值域:利用函数表示的几何意义,借助几何方法或图像,找出函数的值域,即数形结合求函数的值域.

  2.求函数的最大值与值域之间的差异和联系

  求函数最值的常用方法与求函数值域的方法基本相同。事实上,如果函数值域中有最小(大)数,则该数为函数的最小(大)值.因此,求函数的最值和值域本质上是相同的,但问题的角度是不同的,所以回答问题的方式是不同的

  如果函数的值域是(0,16],最大值是16,没有最小值.再比如函数的值域(-∞,-2]∪[2, ∞),但该函数没有最大值和最小值,只有在函数定义域发生变化后x>0时,函数的最小值为2。可见定义域对函数值域或最大值的影响.

  3.函数的最大值应用于实际问题

  函数最值的应用主要体现在函数知识的实际问题上,通常表现为最低工程成本、最大利润或面积(体积)最大(最小)等实际问题,特别注意自变量的实际意义,以正确获得最值.

  (4)函数的奇偶性

  1.函数奇偶性的`定义:函数f(x),如果函数定义域中的任何一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)称为奇函数(或偶函数).

  要正确理解奇函数和偶函数的定义,我们应该注意两点:(1)数轴上的定义域f(x)奇函数或偶函数的必要条件不足;(2)f(x)=-f(x)或f(-x)=f(x)定义域上的恒等式.(奇偶性是函数定义域的整体性质).

  2.奇偶函数的定义是判断奇偶函数的主要依据。为了便于判断函数的奇偶性,有时需要简化函数或等价应用定义:

  注意以下结论的应用:

  (1)不论f(x)是奇函数还是偶函数,f(|x|)偶函数总是;

  (2)f(x)、g(x)分别是定义域D1、D2上的奇函数,所以在D1∩D2上,f(x) g(x)是奇函数,f(x)·g(x)是偶函数,类似于奇怪±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

  (3)奇偶函数复合函数的奇偶性通常是偶函数;

  (4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

  3.奇偶性的几个性质和结论

  (1)一个函数是奇函数的充要条件,它的图像是关于原点对称的;一个函数是偶函数的充要条件,它的图像是关于y轴对称的

  (2)如果函数的定义域对称原点,函数值恒为零,那么它既是奇函数又是偶函数.

  (3)若奇函数f(x)在x=0有意义,则f(0)=0成立.

  (4)若f(x)具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间的单调性相同(反)。

  (5)若f(x)原点对称的定义域,F(x)=f(x) f(-x)是偶函数,G(x)=f(x)-f(-x)是奇函数.

  (6)奇偶推广

  函数y=f(x)定义域内的任何x都有f(a x)=f(a-x),则y=f(x)关于直线的图像x=a对称,即y=f(a x)为偶函数.函数y=f(x)定义域内的任-x都有f(a x)=-f(a-x),则y=f(x)图像关于点(a,0)成中心对称图形,即y=f(a x)为奇函数。

  拓展阅读:总结初中所有函数知识点

  1、一次函数

  2、二次函数

  三、反比例函数

  4.正比函数

  1.正比例函数的求法

  形如y=kx(k为常数,k不等于0),y称为x的正比函数.

  图像练习:1.带定系数 2.描点 3.连线

  图像是一条必须通过坐标轴原点的直线

  性质:当k>0时,图像通过一、三象限,y随着x的增加而增加

  当k<0时,图像通过二、四象限,y随着x的增加而减少

  形如 y=k/x(k为常数且k≠0) 函数,称为反比例函数。

  自变量x的值范围不等于0的所有实数。

  二、反比例函数求法

  反比函数的图像是双曲线。它可以无限接近坐标轴,但永不相交.

  性质:当k>0时,图像在一、三象限内,y随着x的增加而减少,当k<0时,图像在每个象限内,y随着x的增加而增加

  形如y=kx b(k为常数,k不等于0),y称为x的正比函数。

  三、一次函数求法

  正比函数超过原点(0,0),属于一次函数

  k>0,b>O,图像超过1、2、3象限

  k>0,b<0、图像超过1、3、4象限

  k<0,b>0、图像超过1、2、4象限

  k<0,b<0、图像2、3、4象限

  四、二次函数求法

  二次函数:y=ax^2 bx c (a,b,c是常数,a不等于0)

  a>0开口向上

  a<0开口向下

  a,b对称轴在y轴左侧,反之亦然

  |x1-x2|=根号下b^2-4ac除以|a|

  与y轴交点为(0,c)

  b^2-4ac>0,ax^2 bx c=0有两个不相等的实根

  b^2-4ac<0,ax^2 bx c=0无实根

  b^2-4ac=0,ax^2 bx c=0有两个相等的实根

  对称轴x=-b/2a

  顶点(-b/2a,(4ac-b^2)/4a)

  顶点式y=a(x b/2a)^2 (4ac-b^2)/4a

  函数向左移动d(d>0)单位分析为y=a(x b/2a d)^2 (4ac-b^2)/4a,向右就是减

  函数向上移动d(d>0)单位分析为y=a(x b/2a)^2 (4ac-b^2)/4a d,向下就是减

  当a>0时,开口向上,抛物线在y轴上方(顶点在x轴上),向上无限延伸;当a<0时,开口向下,抛物线在x轴下方(顶点在x轴上),向下无限延伸。|a|开口越大,开口越小;|a|开口越小,开口越大.

高中函数总结8

  一、函数对称性:

  1.2.3.4.5.6.7.8.

  f(a+x)=f(a-x)==>f(x)关于x=a对称

  f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称

  f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称

  例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。

  【解析】求两个不同函数的对称轴,用设点和对称原理作解。

  证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)]

  ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.

  例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。

  证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b]

  ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.

  二、函数的周期性

  令a,b均不为零,若:

  1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|

  2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|

  3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|

  4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|

  5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|

  这里只对第2~5点进行解析。

  第2点解析:

  令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba

  第3点解析:同理,f(x+a)=-f(x+2a)……

  ①f(x)=-f(x+a)……

  ②∴由①和②解得f(x)=f(x+2a)∴函数最小正周期T=|2a|

  第4点解析:

  f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)

  又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)

  ∴函数最小正周期T=|2a|

  第5点解析:

  ∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1

  ∴1f(x)=2/[f(x)+1]移项得f(x)=12/[f(x+a)+1]

  那么f(x-a)=12/[f(x)+1],等式右边通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,

  由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)

  ∴函数最小正周期T=|4a|

  扩展阅读:函数对称性、周期性和奇偶性的规律总结

  函数对称性、周期性和奇偶性规律总结

  (一)同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性)

  1、奇偶性:

  (1)奇函数关于(0,0)对称,奇函数有关系式f(x)f(x)0

  (2)偶函数关于y(即x=0)轴对称,偶函数有关系式f(x)f(x)

  2、奇偶性的拓展:同一函数的对称性

  (1)函数的轴对称:

  函数yf(x)关于xa对称f(ax)f(ax)

  f(ax)f(ax)也可以写成f(x)f(2ax)或f(x)f(2ax)

  若写成:f(ax)f(bx),则函数yf(x)关于直线x称

  (ax)(bx)ab对22证明:设点(x1,y1)在yf(x)上,通过f(x)f(2ax)可知,y1f(x1)f(2ax1),

  即点(2ax1,y1)也在yf(x)上,而点(x1,y1)与点(2ax1,y1)关于x=a对称。得证。

  说明:关于xa对称要求横坐标之和为2a,纵坐标相等。

  ∵(ax1,y1)与(ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(ax)f(ax)

  ∵(x1,y1)与(2ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(x)f(2ax)

  ∵(x1,y1)与(2ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(x)f(2ax)

  (2)函数的点对称:

  函数yf(x)关于点(a,b)对称f(ax)f(ax)2b

  上述关系也可以写成f(2ax)f(x)2b或f(2ax)f(x)2b

  若写成:f(ax)f(bx)c,函数yf(x)关于点(abc,)对称2证明:设点(x1,y1)在yf(x)上,即y1f(x1),通过f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以点(2ax1,2by1)也在yf(x)上,而点(2ax1,2by1)与(x1,y1)关于(a,b)对称。得证。

  说明:关于点(a,b)对称要求横坐标之和为2a,纵坐标之和为2b,如(ax)与(ax)之和为2a。

  (3)函数yf(x)关于点yb对称:假设函数关于yb对称,即关于任一个x值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于yb对称。但在曲线c(x,y)=0,则有可能会出现关于yb对称,比如圆c(x,y)x2y240它会关于y=0对称。

  (4)复合函数的`奇偶性的性质定理:

  性质1、复数函数y=f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]。复合函数y=f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]。

  性质2、复合函数y=f(x+a)为偶函数,则f(x+a)=f(-x+a);复合函数y=f(x+a)为奇函数,则f(-x+a)=-f(a+x)。

  性质3、复合函数y=f(x+a)为偶函数,则y=f(x)关于直线x=a轴对称。复合函数y=f(x+a)为奇函数,则y=f(x)关于点(a,0)中心对称。

  总结:x的系数一个为1,一个为-1,相加除以2,可得对称轴方程

  总结:x的系数一个为1,一个为-1,f(x)整理成两边,其中一个的系数是为1,另一个为-1,存在对称中心。

  总结:x的系数同为为1,具有周期性。

  (二)两个函数的图象对称性

  1、yf(x)与yf(x)关于X轴对称。

  证明:设yf(x)上任一点为(x1,y1)则y1f(x1),所以yf(x)经过点(x1,y1)

  ∵(x1,y1)与(x1,y1)关于X轴对称,∴y1f(x1)与yf(x)关于X轴对称.注:换种说法:yf(x)与yg(x)f(x)若满足f(x)g(x),即它们关于y0对称。

高中函数总结9

  ②作差f(x1)—f(x2),并适当变形(“分解因式”、配方成同号项的和等);

  ③依据差式的符号确定其增减性。

  2、导数法:

  设函数y=f(x)在某区间D内可导。如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x)<0,则f(x)在区间D内为减函数。

  补充

  若使得f′(x)=0的x的值只有有限个,则如果f ′(x)≥0,则f(x)在区间D内为增函数;如果f′(x) ≤0,则f(x)在区间D内为减函数。

  单调性的判断方法:定义法及导数法、图象法、复合函数的单调性(同增异减)、用已知函数的'单调性等。

  二、单调性的有关结论

  1、若f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数。

  2、互为反函数的两个函数有相同的单调性。

  3、y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数,简称”同增异减”。

  4、奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反。

  函数奇偶性知识点

  一、简单性质:

  1、图象的对称性质:

  一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;

  2、设f(x),g(x)的定义域分别是D1,D2那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇

  3、任意一个定义域关于原点对称的函数f(x)均可写成一个奇函数g(x)与一个偶函数h(x)和的形式

  4、奇偶函数图象的对称性

  (1)若y=f(a+x)是偶函数,则f(a+x)=f(a—x)?f(2a—x)=f(x)?f(x)的图象关于直线x=a对称;(2)若y=f(b+x)是偶函数,则f(b—x)=—f(b+x)?f(2a—x)=—f(x)?f(x)的图象关于点(b,0)中心对称

  5、一些重要类型的奇偶函数

高中函数总结10

  1. 映射定义:设非空数集A,B,若对集合A中任一元素a,在集合B中有唯一元素b与之对应,则称从A到B的对应为映射

  2. 若集合A中有m个元素,集合B中有n个元素,则从A到B可建立nm个映射

  3.函数定义:函数就是定义在非空数集A,B上的映射,此时称数集A为定义域,象集C={f(x)|x∈A}为值域。定义域,对应法则,值域构成了函数的三要素

  4.相同函数的判断方法:①定义域、值域;②对应法则(两点必须同时具备)

  5.求函数的定义域常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义⑥注意同一表达式中的两变量的取值范围是否相互影响

  6.函数解析式的求法:

  ①定义法(拼凑): ②换元法: ③待定系数法 ④赋值法7.函数值域的求法:

  ①换元配方法。如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域。②判别式法。一个二次分式函数在自变量没有限制时就可以用判别式法去值域。其方法是将等式两边同乘以 dx2+ex+f移项整理成一个x的一元二次方程,方程有实数解则判别式大于等于零,得到一个关于y的不等式,解出y的范围就是函数的值域。

  ③单调性法。如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域

  8.函数单调性的证明方法:

  第一步:设x1、x2是给定区间内的两个任意的值,且x1

  第二步:作差(x1)-(x2),并对“差式”变形,主要采用的方法是“因式分解”或“配方法”;

  第三步:判断差式(x1)-(x2)的正负号,从而证得其增减性

  9、函数图像变换知识

  ①平移变换:

  形如:y=f(x+a):把函数y=f(x)的图象沿x轴方向向左或向右平移

  |a|个单位,就得到y=f(x+a)的图象。

  形如:y=f(x)+a:把函数y=f(x)的图象沿y轴方向向上或向下平移|a|个单位,就得到y=f(x)+a的图象

  ②.对称变换 y=f(x)→ y=f(-x),关于y轴对称

  y=f(x)→ y=-f(x) ,关于x轴对称

  ③.翻折变换

  y=f(x)→y=f|x|, (左折变换)

  把y轴右边的图象保留,然后将y轴右边部分关于y轴对称

  y=f(x)→y=|f(x)|(上折变换)

  把x轴上方的图象保留,x轴下方的图象关于x轴对称

  10.互为反函数的定义域与值域的关系:原函数的定义域和值域分别是反函数的值域及定义域;

  11.求反函数的步骤:①求反函数的定义域(即y=f(x)的值域)②将x,y互换,得y=f–1 (x);③将y=f(x)看成关于x的方程,解出x=f–1 (y),若有两解,要注意解的选择;。

  12.互为反函数的图象间的关系:关于直线y=x对称;

  13. 原函数与反函数的图象交点可在直线y=x上,也可是关于直线y=x对称的两点

  14.原函数与反函数具有相同的单调性

  15、在定义域上单调的函数才具有反函数;反之,并不成立(如y=1/x)

  16.复合函数的定义域求法:

  ① 已知y=f(x)的定义域为A,求y=f[g(x)]的定义域时,可令g(x)A,求得x的取值范围即可。

  ② 已知y=f[g(x)]的定义域为A,求y=f(x)的定义域时,可令xA,求得g(x)的函数值范围即可。

  17.复合函数y=f[g(x)]的值域求法:

  首先根据定义域求出u=g(x)的取值范围A,

  在uA的情况下,求出y=f(u)的值域即可。

  18 .复合函数内层函数与外层函数在定义域内单调性相同,则函数是增函数;单调性不同则函数是减函数。增增、减减为增;增减、减增才减

  ①f(x)与f(x)+c (c为常数)具有相同的单调性

  ②f(x)与c·f(x)当c>0是单调性相同,当c<0时具有相反的单调性

  ③当f(x)恒不为0时,f(x)与1/f(x)具有相反的单调性

  ④当f(x)恒为非负时,f(x)与具有相同的单调性

  ⑤当f(x)、g(x)都是增(减)函数时,f(x)+g(x)也是增(减)函数

  设f(x),g(x)都是增(减)函数,则f(x)·g(x)当f (x),g(x)两者都恒大于0时也是增(减)函数,当两者都恒小于0时是减(增)函数

  19.二次函数求最值问题:根据抛物线的对称轴与区间关系进行分析,

  Ⅰ、若顶点的横坐标在给定的区间上,则

  a>0时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;

  a<0时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;

  Ⅱ、若顶点的横坐标不在给定的.区间上,则

  a>0时:最小值在离对称轴近的端点处取得,最大值在离对称轴远的端点处取得;

  a<0时:最大值在离对称轴近的端点处取得,最小值在离对称轴远的端点处取得

  20.一元二次方程实根分布问题解法:

  ① 将方程的根视为开口向上的二次函数的图像与x轴交点的横坐标

  ②从判别式、对称轴、区间端点函数值三方面分析限制条件

  21.分式函数y=(ax+b)/(cx+d)的图像画法:

  ① 确定定义域渐近线x=-d/c ②确定值域渐近线y=a/c③根据y轴上的交点坐标确定曲线所在象限位置。

  22.指数式运算法则 23.对数式运算法则:

  24.指数函数的图像与底数关系:

  在第一象限内,底数越大,图像(逆时针方向)越靠近y轴。

  25.对数函数的图像与底数关系:

  在第一象限内,底数越大,图像(顺时针方向)越靠近x轴。

  26. 比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较

  27.抽象函数的性质所对应的一些具体特殊函数模型:

  ①f(x1+x2)=f(x1)+f(x2)正比例函数f(x)=kx(k0)

  ②f(x1+x2)=f(x1)·f(x2);f(x1-x2)=f(x1)÷f(x2) y=ax;

  ③f(x1x2)=f(x1)+f(x2);f(x1/x2)=f(x1)-f(x2) y=logax

  28.如果f(a+x)=f(b-x)成立,则y=f(x)图像关于x=(a+b)/2对称;

  特别是,f(x)=f(-x)成立,则y=f(x)图像关于y轴对称

  29.a>f(x)恒成立a>f(x)的最大值

  a

  30. a>f(x)有解a>f(x)的最小值

  a

高中函数总结11

  一次函数

  一、定义与定义式:

  自变量x和因变量y有如下关系:

  y=kx+b

  则此时称y是x的一次函数。

  特别地,当b=0时,y是x的正比例函数。

  即:y=kx (k为常数,k0)

  二、一次函数的性质:

  1、y的变化值与对应的x的变化值成正比例,比值为k

  即:y=kx+b (k为任意不为零的实数b取任何实数)

  2、当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质:

  1、作法与图形:通过如下3个步骤

  (1)列表;

  (2)描点;

  (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

  2、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。

  3、k,b与函数图像所在象限:

  当k0时,直线必通过一、三象限,y随x的增大而增大;

  当k0时,直线必通过二、四象限,y随x的增大而减小。

  当b0时,直线必通过一、二象限;

  当b=0时,直线通过原点

  当b0时,直线必通过三、四象限。

  特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。

  四、确定一次函数的表达式:

  已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

  (1)设一次函数的表达式(也叫解析式)为y=kx+b。

  (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b ①和y2=kx2+b ②

  (3)解这个二元一次方程,得到k,b的值。

  (4)最后得到一次函数的表达式。

  五、一次函数在生活中的应用:

  1、当时间t一定,距离s是速度v的一次函数。s=vt。

  2、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S—ft。

  六、常用公式:(不全,希望有人补充)

  1、求函数图像的k值:(y1—y2)/(x1—x2)

  2、求与x轴平行线段的中点:|x1—x2|/2

  3、求与y轴平行线段的中点:|y1—y2|/2

  4、求任意线段的长:(x1—x2)^2+(y1—y2)^2 (注:根号下(x1—x2)与(y1—y2)的平方和)

  二次函数

  I、定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax^2+bx+c

  (a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大、)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II、二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a0)

  顶点式:y=a(x—h)^2+k [抛物线的顶点P(h,k)]

  交点式:y=a(x—x)(x—x ) [仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a

  III、二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,

  可以看出,二次函数的图像是一条抛物线。

  IV、抛物线的性质

  1、抛物线是轴对称图形。对称轴为直线

  x= —b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2、抛物线有一个顶点P,坐标为

  P( —b/2a,(4ac—b^2)/4a )

  当—b/2a=0时,P在y轴上;当= b^2—4ac=0时,P在x轴上。

  3、二次项系数a决定抛物线的开口方向和大小。

  当a0时,抛物线向上开口;当a0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4、一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab0),对称轴在y轴左;

  当a与b异号时(即ab0),对称轴在y轴右。

  5、常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6、抛物线与x轴交点个数

  = b^2—4ac0时,抛物线与x轴有2个交点。

  = b^2—4ac=0时,抛物线与x轴有1个交点。

  = b^2—4ac0时,抛物线与x轴没有交点。X的取值是虚数(x= —bb^2—4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V、二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax^2+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),

  即ax^2+bx+c=0

  此时,函数图像与x轴有无交点即方程有无实数根。

  函数与x轴交点的横坐标即为方程的根。

  1、二次函数y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  解析式顶点坐标对称轴

  y=ax^2(0,0) x=0

  y=a(x—h)^2(h,0) x=h

  y=a(x—h)^2+k(h,k) x=h

  y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a

  当h0时,y=a(x—h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h0时,则向左平行移动|h|个单位得到、

  当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;

  因此,研究抛物线y=ax^2+bx+c(a0)的.图象,通过配方,将一般式化为y=a(x—h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了、这给画图象提供了方便、

  2、抛物线y=ax^2+bx+c(a0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)、

  3、抛物线y=ax^2+bx+c(a0),若a0,当x —b/2a时,y随x的增大而减小;当x —b/2a时,y随x的增大而增大、若a0,当x —b/2a时,y随x的增大而增大;当x —b/2a时,y随x的增大而减小、

  4、抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2—4ac0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=

  (a0)的两根、这两点间的距离AB=|x—x|

  当△=0、图象与x轴只有一个交点;

  当△0、图象与x轴没有交点、当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0、

  5、抛物线y=ax^2+bx+c的最值:如果a0(a0),则当x= —b/2a时,y最小(大)值=(4ac—b^2)/4a、

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值、

  6、用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a0)、

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x—h)^2+k(a0)、

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x—x)(x—x)(a0)、

  7、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现、

  反比例函数

  形如y=k/x(k为常数且k0)的函数,叫做反比例函数。

  自变量x的取值范围是不等于0的一切实数。

  反比例函数图像性质:

  反比例函数的图像为双曲线。

  由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。

  另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

  如图,上面给出了k分别为正和负(2和—2)时的函数图像。

  当K0时,反比例函数图像经过一,三象限,是减函数

  当K0时,反比例函数图像经过二,四象限,是增函数

  反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

  知识点:

  1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。

  2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(xm)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

高中函数总结12

  抛物线:y=ax*+bx+c

  就是y等于ax的平方加上bx再加上c

  a>0时开口向上

  a<0时开口向下

  c=0时抛物线经过原点

  b=0时抛物线对称轴为y轴

  还有顶点式y=a(x+h)*+k

  就是y等于a乘以(x+h)的平方+k

  -h是顶点坐标的x

  k是顶点坐标的y

  一般用于求最大值与最小值

  抛物线标准方程:y^2=2px

  它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2

  由于抛物线的.焦点可在任意半轴,故共有标准方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py

  关于圆的公式

  体积=4/3(pi)(r^3)

  面积=(pi)(r^2)

  周长=2(pi)r

  圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

  圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

  (一)椭圆周长计算公式

  椭圆周长公式:L=2πb+4(a-b)

  椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

  (二)椭圆面积计算公式

  椭圆面积公式:S=πab

  椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

  以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。

  椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高

  三角函数

  两角和公式

  sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)

  倍角公式

  tan2A=2tanA/(1-tan2A)cot2A=(cot2A-1)/2cota

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin【α+2π*(n-1)/n】=0

  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos【α+2π*(n-1)/n】=0以及

  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

  四倍角公式:

  sin4A=-4*(cosA*sinA*(2*sinA^2-1))

  cos4A=1+(-8*cosA^2+8*cosA^4)

  tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

  五倍角公式:

  sin5A=16sinA^5-20sinA^3+5sinA

  cos5A=16cosA^5-20cosA^3+5cosA

  tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)

  六倍角公式:

  sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))

  cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))

  tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)

  七倍角公式:

  sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))

  cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))

  tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)

  八倍角公式:

  sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))

  cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)

  tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)

  九倍角公式:

  sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))

  cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))

  tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)

  十倍角公式:

  sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))

  cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))

  tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)

  万能公式:

  sinα=2tan(α/2)/【1+tan^2(α/2)】

  cosα=【1-tan^2(α/2)】/【1+tan^2(α/2)】

  tanα=2tan(α/2)/【1-tan^2(α/2)】

  半角公式

  sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

  cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))

  和差化积

  2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

  cotA+cotBsin(A+B)/sinAsinB-cotA+cotBsin(A+B)/sinAsinB

  某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

  1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

  余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角

  乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

高中函数总结13

  1、函数性质

  幂函数的、图象一定会出现在、第一象限内,一定不会出现在、第四象限,至于是否出现在第二、三象限内,要看函数的、奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与、坐标轴相交,则交点一定是、原点.

  正值性质

  当α>0时,幂函数y=x、α有下列性质:

  a、图像都经过点(1,1)(0,0);

  b、函数的图像在区间[0,+∞)上是、增函数;

  c、在第一象限内,α>1时,、导数值逐渐增大;α=1时,导数为、常数;0<α<1时,导数值逐渐减小,趋近于0;

  负值性质

  当α<0时,幂函数y=x、α有下列性质:

  a、图像都通过点(1,1);

  b、图像在区间(0,+∞)上是、减函数;(内容补充:若为X、-2,易得到其为、偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)

  c、在、第一象限内,有两条渐近线(即坐标轴),、自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。

  零值性质

  当α=0时,幂函数y=x、a有下列性质:

  a、y=x、0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。

  2、函数特性

  对于α的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  α为约分数

  如果α=p/q,且p/q为、既约分数(即p,q、互质),q和p都是、整数,则x^(p/q)=q次根号下(x的p次方)。如果q是、奇数,函数的、定义域是R;如果q是、偶数,函数的、定义域是[0,+∞)。

  α为负整数

  当指数α是、负整数时,设α=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在、偶数次的根号下而不能为负数,那么我们就可以知道:

  α小于0时,x不等于0;

  α的分母为偶数时,x不小于0;

  α的分母为奇数时,x取R。

  3、函数判定

  幂函数的一般形式是y=x,其中,n可为任何实数,但中学阶段仅研究n为有理数的.情形,这时可表示为y=x^(m/k),其中m∈Z,k∈N*,且m,k互质。特别,当k=1时为整数指数幂。

  (1)当m,k都为正奇数时,如y=x,y=x,y=x^(3/5)等,定义域、值域均为R,为奇函数;

  (2)当m为负奇数,k为正奇数时,如y=x^(-1)=1/x,y=x^(-3)=1/x,y=x^(-3/5)等,定义域、值域均为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),为奇函数;

  (3)当m为正奇数,k为正偶数时,如y=x^(1/2),y=x^(3/4)等,定义域、值域均为[0,+∞),为非奇非偶函数;

  (4)当m为负奇数,k为正偶数时,如y=x^(-1/2),y=x^(-3/4)等,定义域、值域均为(0,+∞),为非奇非偶函数;

  (5)当m为正偶数,k为正奇数时,如y=x,y=x^(2/3)等,定义域为R、值域为[0,+∞),为偶函数;

  (6)当m为负偶数,k为正奇数时,如y=x^(-2)=1/x,y=x^(-2/3)等,定义域为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),值域为(0,+∞),为偶函数。、[1]

  4、讨论分析

  由于x大于0是对α的、任意取值都有意义的,因此下面给出幂函数在各、象限的各自情况。可以看到:

  (1)所有的图像都通过(1,1)这点.(α≠0)、α>0时、图象过点(、0,0)和(1,1)。

  (2)、单调区间:

  当α为整数时,α的正负性和奇偶性决定了函数的单调性:

  ①当α为正奇数时,图像在定义域为R内单调递增;

  ②当α为正偶数时,图像在定义域为第二象限内单调递减,在第一象限内单调递增;

  ③当α为负奇数时,图像在第一三象限各象限内单调递减(但不能说在定义域R内单调递减);

  ④当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。

  当α为分数时,α的正负性和分母的奇偶性决定了函数的单调性:

  ①当α>0,分母为偶数时,函数在第一象限内单调递增;

  ②当α>0,分母为奇数时,函数在第一、三象限各象限内单调递增;

  ③当α<0,分母为偶数时,函数在第一象限内单调递减;

  ④当α<0,分母为奇数时,函数在第一、三象限各象限内单调递减(但不能说在定义域R内单调递减);

  (3)当α>1时,幂函数图形下凹(竖抛);

  当0<α<1时,幂函数图形上凸(横抛);

  当α<0时,图像为双曲线。

  (4)在(0,1)上,幂函数中α越大,函数图像越靠近x轴;在(1,﹢∞)上幂函数中α越大,函数图像越远离x轴。

  (5)当α<0时,α越小,图形倾斜程度越大。

  (6)显然幂函数无界限。

  (7)α=2n(n为整数),该函数为偶函数、{x|x≠0}。

高中函数总结14

  1.函数的定义

  函数是高考数学中的重点内容,学习函数需要首先掌握函数的各个知识点,然后运用函数的各种性质来解决具体的问题。

  设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A-B为从集合A到集合B的一个函数,记作y=f(x),xA

  2.函数的定义域

  函数的定义域分为自然定义域和实际定义域两种,如果给定的函数的解析式(不注明定义域),其定义域应指的是使该解析式有意义的自变量的取值范围(称为自然定义域),如果函数是有实际问题确定的,这时应根据自变量的实际意义来确定,函数的值域是由全体函数值组成的集合。

  3.求解析式

  求函数的解析式一般有三种种情况:

  (1)根据实际问题建立函数关系式,这种情况需引入合适的变量,根据数学的`有关知识找出函数关系式。

  (2)有时体中给出函数特征,求函数的解析式,可用待定系数法。

  (3)换元法求解析式,f[h(x)]=g(x)求f(x)的问题,往往可设h(x)=t,从中解出x,代入g(x)进行换元来解。掌握求函数解析式的前提是,需要对各种函数的性质了解且熟悉。

  目前我们已经学习了常数函数、指数与指数函数、对数与对数函数、幂函数、三角函数、反比例函数、二次函数以及由以上几种函数加减乘除,或者复合的一些相对较复杂的函数,但是这种函数也是初等函数。

高中函数总结15

  1.①与(0°≤<360°)终边相同的角的集合(角与角的终边重合):|k360,kZ

  ②终边在x轴上的角的集合:|k180,kZ③终边在y轴上的角的集合:|k18090,kZ

  ④终边在坐标轴上的角的集合:|k90,kZ

  ⑤终边在y=x轴上的角的集合:|k18045,kZ⑥终边在yx轴上的角的集合:|k18045,kZ

  ⑦若角与角的终边关于x轴对称,则角与角的关系:360k

  ⑧若角与角的.终边关于y轴对称,则角与角的关系:360k180

  ⑨若角与角的终边在一条直线上,则角与角的关系:180k

  ⑩角与角的终边互相垂直,则角与角的关系:360k902.角度与弧度的互换关系:360°=2180°=1°=0.017451=57.30°=57°18′3、弧长公式:l||r.扇形面积公式:s12扇形2lr12||r

  2、三角函数在各象限的符号:(一全二正弦,三切四余弦)

  yy+y+-+-+-o-x-o+x+o-x正弦、余割余弦、正割正切、余切

  3.三角函数的定义域:

  三角函数定义域f(x)sinxx|xRf(x)cosxx|xRf(x)tanxx|xR且xk1,kZ2

  f(x)cotxx|xR且xk,kZ

  4、同角三角函数的基本关系式:

  sincostan

  cossincot

  tancot1sin2cos217、诱导公式:

  把k2“奇变偶不变,符号看象限”的三角函数化为的三角函数,概括为:三角函数的公式:

  (一)基本关系

  公式组一sinxcscx=1tanx=sinx22

  cosxsinx+cosx=1cosxsecx=1x=cosx2sinx1+tanx=sec2xtanxcotx=11+cot2x=csc2x

  公式组二公式组三

  sin(2kx)sinxsin(x)sinxcos(2kx)cosxcos(x)cosxtan(2kx)tanxtan(x)tanxcot(2kx)cotxcot(x)cotx

  公式组四公式组五sin(x)sinxsin(2x)sinxcos(x)cosxcos(2x)cosxtan(x)tanxtan(2x)tanxcot(x)cotx

  cot(2x)cotx(二)角与角之间的互换

  cos()coscossinsincos()coscossinsin

  公式组六

  sin(x)sinxcos(x)cosxtan(x)tanx

  cot(x)cotxsin22sincos-2-

  cos2cos2sin2cos112sin

  2tan1tan2222sin()sincoscossintan2sin()sincoscossintan()tantan1tantan

  tantan1tantan

  tan()

  5.正弦、余弦、正切、余切函数的图象的性质:

  ysinxycosxytanxycotxyAsinx(A、>0)定义域RR值域周期性奇偶性单调性[1,1][1,1]1x|xR且xk,kZ2x|xR且xk,kZRRR奇函数A,A22奇函数2当当0,非奇非偶奇函数偶函数奇函数0,上为上为上为增函上为增函数;上为增增函数;增函数;数;上为减函数函数;上为减函数上为减上为减上为减函数函数函数注意:①ysinx与ysinx的单调性正好相反;ycosx与ycosx的单调性也同样相反.一般地,若yf(x)在[a,b]上递增(减),则yf(x)在[a,b]上递减(增).②ysinx与的ycosx周期是.

  ▲y

  Ox

  0)的周期T③ysin(x)或yx2cos(x)(2.

  ytan的周期为2(TT2,如图,翻折无效).

  ④ysin(x)的对称轴方程是xk2(

  kZ),对称中心(

  12k,0);

  ycos(x)的对称轴方程是xk(

  kZ),对称中心(k,0);

  yatn(

  x)的对称中心(

  k2,0).

  三角函数图像

  数y=Asin(ωx+φ)的振幅|A|,周期T2||,频率f1T||2,相位x;初

  相(即当x=0时的相位).(当A>0,ω>0时以上公式可去绝对值符号),

  由y=sinx的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y=Asinx的图象,叫做振幅变换或叫沿y轴的伸缩变换.(用y/A替换y)

  由y=sinx的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的|1|倍,得到y=sinωx的图象,叫做周期变换或叫做沿x轴的伸缩变换.(用

  ωx替换x)

  由y=sinx的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y=sin(x+φ)的图象,叫做相位变换或叫做沿x轴方向的平移.(用x+φ替换x)

  由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到y=sinx+b的图象叫做沿y轴方向的平移.(用y+(-b)替换y)

  由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x轴量伸缩量的区别。

【高中函数总结】相关文章:

高一函数总结06-22

三大函数总结08-22

函数知识点总结06-09

函数知识点总结[优秀]06-09

函数对称性公式大总结06-22

高一数学函数图像总结08-27

高一数学函数知识总结09-07

三角函数公式总结08-29

《函数》教学反思05-26

Copyright©2003-2024xianxue.com版权所有