当前位置:贤学网>范文>工作总结> 总结数学选修知识点

总结数学选修知识点

时间:2024-08-24 08:46:27 工作总结 我要投稿
  • 相关推荐

总结数学选修知识点

  总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,为此要我们写一份总结。总结怎么写才是正确的呢?以下是小编收集整理的总结数学选修知识点,欢迎大家分享。

总结数学选修知识点

总结数学选修知识点1

  一、直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  (2)直线的斜率

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时。当时,;当时,不存在。

  ②过两点的直线的斜率公式:

  注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (2)k与P1、P2的顺序无关;

  (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  (3)直线方程

  ①点斜式:直线斜率k,且过点

  注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

  ②斜截式:,直线斜率为k,直线在y轴上的截距为b

  ③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

  ⑤一般式:(A,B不全为0)

  ⑤一般式:(A,B不全为0)

  注意:○1各式的适用范围

  ○2特殊的方程如:平行于x轴的.直线:(b为常数);平行于y轴的直线:(a为常数);

  (4)直线系方程:即具有某一共同性质的直线

  (一)平行直线系

  平行于已知直线(是不全为0的常数)的直线系:(C为常数)

  (二)过定点的直线系

  (ⅰ)斜率为k的直线系:,直线过定点;

  (ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

  (5)两直线平行与垂直

  当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

  (6)两条直线的交点

  相交:交点坐标即方程组的一组解。方程组无解;方程组有无数解与重合

  (7)两点间距离公式:设是平面直角坐标系中的两个点,则

  (8)点到直线距离公式:一点到直线的距离

  (9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。

总结数学选修知识点2

  1.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

  解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法。

  2.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混。二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r.

  3.你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的.概率公式。)

  4.求分布列的解答题你能把步骤写全吗?

  5.如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。)

  6.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)

  高二数学选修2-3知识点

  1.排列及计算公式

  从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.

  p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).

  2.组合及计算公式

  从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

  c(n,m)表示.

  c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);

  3.其他排列与组合公式

  从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

  n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为

  n!/(n1!*n2!*...*nk!).

  k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

  排列(Pnm(n为下标,m为上标))

  Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

  组合(Cnm(n为下标,m为上标))

  Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

  公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1

  从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);

  因为从n到(n-r+1)个数为n-(n-r+1)=r

总结数学选修知识点3

  选修2-1

  第一章 常用逻辑用语

  1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.

  真命题:判断为真的语句.

  假命题:判断为假的语句.

  2、“若 ,则 ”形式的命题中的 称为命题的条件, 称为命题的结论.

  3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.

  若原命题为“若 ,则 ”,它的逆命题为“若 ,则 ”.

  4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.

  若原命题为“若 ,则 ”,则它的否命题为“若 ,则 ”.

  5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.

  若原命题为“若 ,则 ”,则它的否命题为“若 ,则 ”.

  6、四种命题的真假性:

  原命题

  逆命题

  否命题

  逆否命题

  种命题的真假性之间的关系:

  两个命题互为逆否命题,它们有相同的真假性;

  两个命题为互逆命题或互否命题,它们的`真假性没有关系.

  7、若 ,则 是 的充分条件, 是 的必要条件.

  若 ,则 是 的充要条件(充分必要条件).

  8、用联结词“且”把命题 和命题 联结起来,得到一个新命题,记作 .

  当 、 都是真命题时, 是真命题;当 、 两个命题中有一个命题是假命题时, 是假命题.

  用联结词“或”把命题 和命题 联结起来,得到一个新命题,记作 .

  当 、 两个命题中有一个命题是真命题时, 是真命题;当 、 两个命题都是假命题时, 是假命题.

  对一个命题 全盘否定,得到一个新命题,记作 .

  若 是真命题,则 必是假命题;若 是假命题,则 必是真命题.

  9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“ ”表示.

  含有全称量词的命题称为全称命题.

  全称命题“对 中任意一个 ,有 成立”,记作“ , ”.

  短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“ ”表示.

  含有存在量词的命题称为特称命题.

  特称命题“存在 中的一个 ,使 成立”,记作“ , ”.

  10、全称命题 : , ,它的否定 : , .全称命题的否定是特称命题.

总结数学选修知识点4

  函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。

  常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)

  平移变换y=f(x)→y=f(x+a),y=f(x)+b

  注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。

  (ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。

  对称变换y=f(x)→y=f(-x),关于y轴对称

  y=f(x)→y=-f(x),关于x轴对称

  y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称

  y=f(x)→y=|f(x)|把y轴右边的'图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)

  伸缩变换:y=f(x)→y=f(ωx),y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。

  一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;

总结数学选修知识点5

  导数及其应用

  一.导数概念的引入

  数学选修2-2知识点总结

  1.导数的物理意义:瞬时速率。一般的,函数yf(x)在xx0处的瞬时变化率是

  limf(x0x)f(x0)x,

  x0我们称它为函数yf(x)在xx0处的导数,记作f(x0)或y|xx,即

  0f(x0)=limf(x0x)f(x0)xx0

  例1.在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:

  s)存在函数关系

  h(t)4.9t6.5t10

  2运动员在t=2s时的瞬时速度是多少?解:根据定义

  vh(2)limh(2x)h(2)xx013.1

  即该运动员在t=2s是13.1m/s,符号说明方向向下

  2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点Pn趋近于P时,直线PT与

  曲线相切。容易知道,割线PPn的斜率是knf(xn)f(x0)xnx0,当点Pn趋近于P时,函

  数yf(x)在xx0处的导数就是切线PT的斜率k,即

  klimf(xn)f(x0)xnx0f(x0)

  x03.导函数:当x变化时,f(x)便是x的一个函数,我们称它为f(x)的导函数.yf(x)的导函数有时也记作y,即

  f(x)limf(xx)f(x)xx0

  二.导数的计算

  1.函数yf(x)c的导数2.函数yf(x)x的导数3.函数yf(x)x的导数

  4.函数yf(x)1x的导数

  基本初等函数的导数公式:

  1若f(x)c(c为常数),则f(x)0;2若f(x)x,则f(x)x1;3若f(x)sinx,则f(x)cosx4若f(x)cosx,则f(x)sinx;5若f(x)ax,则f(x)axlna6若f(x)ex,则f(x)ex

  x7若f(x)loga,则f(x)1xlna1x

  8若f(x)lnx,则f(x)导数的运算法则

  1.[f(x)g(x)]f(x)g(x)

  2.[f(x)g(x)]f(x)g(x)f(x)g(x)

  f(x)g(x)f(x)g(x)f(x)g(x)[g(x)]23.[]

  复合函数求导

  yf(u)和ug(x),称则y可以表示成为x的函数,即yf(g(x))为一个复合函数yf(g(x))g(x)

  三.导数在研究函数中的应用1.函数的单调性与导数:

  一般的,函数的单调性与其导数的正负有如下关系:

  在某个区间(a,b)内,如果f(x)0,那么函数yf(x)在这个区间单调递增;如果f(x)0,那么函数yf(x)在这个区间单调递减.2.函数的极值与导数

  极值反映的是函数在某一点附近的大小情况.求函数yf(x)的极值的方法是:

  (1)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值;(2)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极小值;4.函数的最大(小)值与导数

  函数极大值与最大值之间的关系.

  求函数yf(x)在[a,b]上的最大值与最小值的步骤(1)求函数yf(x)在(a,b)内的极值;

  (2)将函数yf(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是一个

  最大值,最小的是最小值.

  四.生活中的优化问题

  利用导数的知识,,求函数的最大(小)值,从而解决实际问题

  第二章推理与证明

  考点一合情推理与类比推理

  根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理

  根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.

  类比推理的一般步骤:

  (1)找出两类事物的相似性或一致性;

  (2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);

  (3)一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的如果两个事物在某

  些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的

  (4)一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比

  得出的命题越可靠.

  考点二演绎推理(俗称三段论)

  由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.

  考点三数学归纳法

  1.它是一个递推的数学论证方法.

  2.步骤:A.命题在n=1(或n0)时成立,这是递推的`基础;B.假设在n=k时命题成立C.证明n=k+1时命题也成立,

  完成这两步,就可以断定对任何自然数(或n>=n0,且nN)结论都成立。考点三证明1.反证法:2.分析法:3.综合法:

  第一章数系的扩充和复数的概念考点一:复数的概念

  (1)复数:形如abi(aR,bR)的数叫做复数,a和b分别叫它的实部和虚部.

  (2)分类:复数abi(aR,bR)中,当b0,就是实数;b0,叫做虚数;当a0,b0时,

  叫做纯虚数.

  (3)复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等.

  (4)共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数.(5)复平面:建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴除去原点的部

  分叫做虚轴。

  (6)两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。

  考点二:复数的运算

  1.复数的加,减,乘,除按以下法则进行设z1abi,z2cdi(a,b,c,dR)则

  z1z2(ac)(bd)iz1z2(acbd)(adbc)i

  z1z2(acbd)(adbc)icd22(z20)

  2,几个重要的结论

  2222(1)|z1z2||z1z2|2(|z1||z2|)

  (2)zz|z|2|z|2(3)若z为虚数,则|z|z3.运算律

  (1)zmznzmn;(2)(z)zmnmnnnn;(3)(z1z2)z1z2(m,nR)

  224.关于虚数单位i的一些固定结论:

  (1)i1(2)ii(3)i1(2)ii234nn2in3in

  扩展阅读:高中数学文科选修1-2知识点总结

  高中数学选修1-2知识点总结

  第一章统计案例

  1.线性回归方程①变量之间的两类关系:函数关系与相关关系;②制作散点图,判断线性相关关系

  ③线性回归方程:ybxa(最小二乘法)

  nxiyinxyi1bn2其中,2xinxi1aybx注意:线性回归直线经过定点(x,y).

  2.相关系数(判定两个变量线性相关性):r(xi1nix)(yiy)2

  (xi1nix)(yi1niy)2注:⑴r>0时,变量x,y正相关;r第二章框图

  1.流程图

  流程图是由一些图形符号和文字说明构成的图示.流程图是表述工作方式、工艺流程的一种常用手段,它的特点是直观、清晰.3.结构图

  一些事物之间不是先后顺序关系,而是存在某种逻辑关系,像这样的关系可以用结构图来描述.常用的结构图一般包括层次结构图,分类结构图及知识结构图等.

  第三章推理与证明

  1.推理⑴合情推理:

  归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。①归纳推理

  由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。归纳推理是由部分到整体,由个别到一般的推理。②类比推理

  由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。类比推理是特殊到特殊的推理。⑵演绎推理

  从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。演绎推理是由一般到特殊的推理。

  “三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结论---------根据一般原理,对特殊情况得出的判断。

  2

  2.证明

  (1)直接证明①综合法

  一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。②分析法

  一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。(2)间接证明……反证法

  一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。

  第四章复数

  1.复数的有关概念

  (1)把平方等于-1的数用符号i表示,规定i2=-1,把i叫作虚数单位.

  (2)形如a+bi的数叫作复数(a,b是实数,i是虚数单位).通常表示为z=a+bi(a,b∈R).(3)对于复数z=a+bi,a与b分别叫作复数z的______与______,并且分别用Rez与Imz表示.2.数集之间的关系

  复数的全体组成的集合叫作_____________,记作C.3.复数的分类

  实数(b=0)

  复数a+bi

  纯虚数(a=0)(a,b∈R)虚数(b≠0)

  非纯虚数(a≠0)

  4.两个复数相等的充要条件

  设a,b,c,d都是实数,则a+bi=c+di,当且仅当_________

  3

  5.复平面

  (1)定义:当用__________________的点来表示复数时,我们称这个直角坐标平面为复平面.(2)实轴:_______称为实轴.虚轴:_________称为虚轴.6.复数的模

  若z=a+bi(a,b∈R),则_______________.7.共轭复数

  (1)定义:当两个复数的实部________,虚部互为___________时,这样的两个复数叫作互为共轭复数.复数z的共轭复数用______表示,即若z=a+bi,则z-=__________.2)性质:==___________.

  必背结论

  1.(1)z=a+bi∈Rb=0(a,b∈R)z=zz2≥0;(2)z=a+bi是虚数b≠0(a,b∈R);

  (3)z=a+bi是纯虚数a=0且b≠0(a,b∈R)z+z=0(z≠0)z2

总结数学选修知识点6

  数学选修2-2导数及其应用知识点必记

  1.函数的平均变化率是什么?答:平均变化率为

  f(x2)f(x1)f(x1x)f(x1)yfx2x1xxx注1:其中x是自变量的改变量,可正,可负,可零。

  注2:函数的平均变化率可以看作是物体运动的平均速度。

  2、导函数的概念是什么?

  答:函数yf(x)在xx0处的瞬时变化率是limf(x0x)f(x0)y,则称limx0xx0x函数yf(x)在点x0处可导,并把这个极限叫做yf(x)在x0处的导数,记作f"(x0)或y"|xx0,即f"(x0)=limf(x0x)f(x0)y.limx0xx0x

  3.平均变化率和导数的几何意义是什么?

  答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。

  4导数的背景是什么?

  答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。

  5、常见的函数导数和积分公式有哪些?函数导函数不定积分ycy"0xn1xdxn1nyxnnN*y"nxn1yaxa0,a1y"alnay"exxaxadxlnaxyexedxexxylogaxa0,a1,x0ylnxy"1xlna1x1xdxlnxy"ysinxy"cosxcosxdxsinxsinxdxcosxycosxy"sinx

  6、常见的导数和定积分运算公式有哪些?答:若fx,gx均可导(可积),则有:和差的导数运算f(x)g(x)f(x)g(x)""f"(x)g"(x)f"(x)g(x)f(x)g"(x)积的导数运算特别地:Cfx"Cf"x商的导数运算f(x)f"(x)g(x)f(x)g"(x)(g(x)0)g(x)2g(x)"1g"(x)特别地:"2gxgx复合函数的导数yxyuux微积分基本定理fxdxab(其中F"xfx)和差的积分运算ba[f1(x)f2(x)]dxf1(x)dxf2(x)dxaabb特别地:积分的区间可加性bakf(x)dxkf(x)dx(k为常数)abbaf(x)dxf(x)dxf(x)dx(其中acb)accb

  7.用导数求函数单调区间的步骤是什么?答:①求函数f(x)的导数f"(x)

  ②令f"(x)>0,解不等式,得x的范围就是递增区间.③令f"(x)

  8.利用导数求函数的最值的步骤是什么?

  答:求f(x)在a,b上的最大值与最小值的步骤如下:⑴求f(x)在a,b上的极值;

  ⑵将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。

  注:实际问题的开区间唯一极值点就是所求的最值点;

  9.求曲边梯形的思想和步骤是什么?

  答:分割近似代替求和取极限(“以直代曲”的思想)

  10.定积分的性质有哪些?

  根据定积分的定义,不难得出定积分的如下性质:

  11.

  ababbbbb性质5若f(x)0,xa,b,则f(x)dx0

  ①推广:[f1(x)f2(x)fm(x)]dxf1(x)dxf2(x)dxfm(x)

  aaaa②推广:f(x)dxf(x)dxf(x)dxf(x)dx

  aac1ckbc1c2b11定积分的取值情况有哪几种?

  答:定积分的值可能取正值,也可能取负值,还可能是0.

  (l)当对应的曲边梯形位于x轴上方时,定积分的值取正值,且等于x轴上方的图形面积;

  (2)当对应的曲边梯形位于x轴下方时,定积分的值取负值,且等于x轴上方图形面积的相反数;

  (3)当位于x轴上方的曲边梯形面积等于位于x轴下方的曲边梯形面积时,定积分的值为0,且等于x轴上方图形的面积减去下方的图形的面积.

  12.物理中常用的微积分知识有哪些?答:(1)位移的导数为速度,速度的导数为加速度。(2)力的积分为功。

  数学选修2-2推理与证明知识点必记

  13.归纳推理的定义是什么?答:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。

  14.归纳推理的思维过程是什么?答:大致如图:

  实验、观察概括、推广猜测一般性结论

  15.归纳推理的特点有哪些?

  答:①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。

  ②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。③归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。

  16.类比推理的定义是什么?

  答:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。

  17.类比推理的思维过程是什么?答:

  观察、比较联想、类推推测新的结论

  18.演绎推理的定义是什么?

  答:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。

  19.演绎推理的'主要形式是什么?答:三段论

  20.“三段论”可以表示为什么?

  答:①大前题:M是P②小前提:S是M③结论:S是P。

  其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。

  21.什么是直接证明?它包括哪几种证明方法?

  答:直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。

  22.什么是综合法?

  答:综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。

  23.什么是分析法?答:分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。

  要注意叙述的形式:要证A,只要证B,B应是A成立的充分条件.分析法和综合法常结合使用,不要将它们割裂开。

  24什么是间接证明?

  答:即反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。

  25.反证法的一般步骤是什么?

  答:(1)假设命题结论不成立,即假设结论的反面成立;

  (2)从假设出发,经过推理论证,得出矛盾;

  (3)从矛盾判定假设不正确,即所求证命题正确。

  26常见的“结论词”与“反义词”有哪些?原结论词反义词原结论词至少有一个至多有一个至少有n个至多有n个一个也没有至少有两个至多有n-1个至少有n+1个对任意x不成立p或qp且q反义词存在x使成立p且qp或q对所有的x都成立存在x使不成立

  27.反证法的思维方法是什么?答:正难则反....

  28.如何归缪矛盾?

  答:(1)与已知条件矛盾;(2)与已有公理、定理、定义矛盾;

  (3)自相矛盾.

  29.数学归纳法(只能证明与正整数有关的数学命题)的步骤是什么?nnN答:(1)证明:当n取第一个值时命题成立;00

  (2)假设当n=k(k∈N*,且k≥n0)时命题成立,证明当n=k+1时命题也成立由(1),(2)可知,命题对于从n0开始的所有正整数n都正确注:常用于证明不完全归纳法推测所得命题的正确性的证明。

  数学选修2-2数系的扩充和复数的概念知识点必记

  30.复数的概念是什么?答:形如a+bi的数叫做复数,其中i叫虚数单位,a叫实部,b叫虚部,数集

  Cabi|a,bR叫做复数集。

  规定:abicdia=c且,强调:两复数不能比较大小,只有相等或不相b=d等。实数(b0)

  31.数集的关系有哪些?答:复数Z一般虚数(a0)

  虚数(b0)纯虚数(a0)

  32.复数的几何意义是什么?答:复数与平面内的点或有序实数对一一对应。

  33.什么是复平面?

  答:根据复数相等的定义,任何一个复数zabi,都可以由一个有序实数对

  (a,b)唯一确定。由于有序实数对(a,b)与平面直角坐标系中的点一一对应,因此

  复数集与平面直角坐标系中的点集之间可以建立一一对应。这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。

  34.如何求复数的模(绝对值)?答:与复数z对应的向量OZ的模r叫做复数zabi的模(也叫绝对值)记作z或abi。由模的定义可知:zabia2b2

  35.复数的加、减法运算及几何意义是什么?

  答:①复数的加、减法法则:z1abi与z2cdi,则z1z2ac(bd)i。

  注:复数的加、减法运算也可以按向量的加、减法来进行。

  ②复数的乘法法则:(abi)(cdi)acbdadbci。

  ③复数的除法法则:

  abi(abi)(cdi)acbdbcadicdi(cdi)(cdi)c2d2c2d2其中cdi叫做实数化因子

  36.什么是共轭复数?

  答:两复数abi与abi互为共轭复数,当b0时,它们叫做共轭虚数。

总结数学选修知识点7

  选修2-1

  一、基础知识

  (1)常用逻辑用语:四种命题(原、逆、否、逆否)及其相互关系;充分条件与必要条件;简单的逻辑联结词(或、且、非);全称量词与存在性量词,全称命题与特称命题的否定.

  (2)圆锥曲线:曲线与方程;求轨迹的常用步骤;椭圆的定义及其标准方程、椭圆的简单几何性质(注意离心率与形状的关系);双曲线的定义及其标准方程、双曲线的简单几何性质(注意双曲线的渐近线)、等轴双曲线与共轭双曲线;抛物线的定义及其标准方程;抛物线的简单几何性质;直线与圆锥曲线的常用公式(弦长公式、两根差公式).

  圆锥曲线的`几何性质的常用拓展还有:焦半径公式、椭圆与双曲线的焦准定义、椭圆与双曲线的“垂径定理”、焦点三角形面积公式、圆锥曲线的光学性质等等.

  (3)空间向量与立体几何:空间向量的概念、表示与运算(加法、减法、数乘、数量积);空间向量基本定理、空间向量运算的坐标表示;平面的法向量、用空间向量计算空间的角与距离的方法.

  二、重难点与易错点

  重难点与易错点部分配合必考题型使用,做完必考题型后会对重难点与易错部分部分有更深入的理解.

  (1)区分逆命题与命题的否定;

  (2)理解充分条件与必要条件;

  (3)椭圆、双曲线与抛物线的定义;

  (4)椭圆与双曲线的几何性质,特别是离心率问题;

  (5)直线与圆锥曲线的位置关系问题;

  (6)直线与圆锥曲线中的弦长与面积问题;

  (7)直线与圆锥曲线问题中的参数求解与性质证明;

  (8)轨迹与轨迹求法;

  (9)运用空间向量求空间中的角度与距离;

  (10)立体几何中的动态问题探究.

总结数学选修知识点8

  第一讲相似三角形的判定及有关性质1.平行线等分线段定理

  平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。

  推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。推理2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。

  2.平分线分线段成比例定理

  平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。

  推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

  3.相似三角形的判定及性质

  相似三角形的判定:

  定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似三角形对应边的比值叫做相似比(或相似系数)。

  由于从定义出发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给出过如下几个判定两个三角形相似的简单方法:

  (1)两角对应相等,两三角形相似;

  (2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似。

  预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。

  判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。简述为:两角对应相等,两三角形相似。

  判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。

  判定定理3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。

  引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。定理:(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;

  (2)如果两个直角三角形的两条直角边对应成比例,那么它们相似。

  定理:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和直角边对应成比例,那么这两个直角三角形相似。相似三角形的性质:

  (1)相似三角形对应高的比、对应中线的比和对应平分线的比都等于相似比;(2)相似三角形周长的比等于相似比;

  (3)相似三角形面积的比等于相似比的平方。

  相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方。

  4.直角三角形的射影定理

  射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项。

  第二讲直线与圆的位置关系1.圆周定理

  圆周角定理:圆上一条弧所对的圆周角等于它所对的圆周角的一半。圆心角定理:圆心角的度数等于它所对弧的度数。

  推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等。推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

  2.圆内接四边形的性质与判定定理

  定理1:圆的内接四边形的对角互补。

  定理2:圆内接四边形的外角等于它的内角的对角。

  圆内接四边形判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆。

  3.圆的切线的性质及判定定理

  切线的性质定理:圆的`切线垂直于经过切点的半径。推论1:经过圆心且垂直于切线的直线必经过切点。推论2:经过切点且垂直于切线的直线必经过圆心。

  切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

  4.弦切角的性质

  弦切角定理:弦切角等于它所夹的弧所对的圆周角。

  5.与圆有关的比例线段

  相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

  割线定理:从园外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

  切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

  切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

  6.垂径定理

  垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

  7.三角形的五心

  (1)内心:三条角平分线的交点,也是三角形内切圆的圆心。性质:到三边距离相等。(2)外心:三条中垂线的交点,也是三角形外接圆的圆心。性质:到三个顶点距离相等。(3)重心:三条中线的交点。性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍。

  (4)垂心:三条高所在直线的交点。

  (5)旁心:三角形任意两角的外角平分线和第三个角的内角平分线的交点。性质:到三边的

  距离相等

  第三讲圆锥曲线性质的探究1.平面与圆柱面的截线:

  当平面与圆柱的两底面平行时,截面是个圆;当平面与圆柱的两底面不平行时,截面是个椭

  圆;定理1:圆柱形物体的斜截口是椭圆。

  定理2:在空间中,取直线l为轴,直线l’与l相交于O点,夹角为α,l’围绕l旋转得

  到以O为顶点,l’为母线的圆锥面,任取平面π,若它与轴l的夹角为β(当π与l平行时,记β=0),则截面不过顶点时:

  (1)β>α,平面π与圆锥的交线为椭圆;(2)β=α,平面π与圆锥的交线为抛物线;(3)

  β<α,平面π与圆锥的交线为双曲线;截面过顶点时:(1)截面和圆锥面只相交于顶点,交线为一个点。

  (2)截面和圆锥面相交于两条母线,交线为两条相交曲线。(3)截面和圆锥面相切,交线为两

总结数学选修知识点9

  一、基础知识

  (1)空间几何体:典型多面体(棱柱、棱锥、棱台)与典型旋转体(圆柱、圆锥、圆台、球)的结构特征以及表面积体积公式、球面距离、点面距离、中心投影与平行投影、三视图、直观图;

  (2)点、线、面的位置关系:平面的三个公理、平行的传递性、等角定理、异面直线的概念、直线与平面的位置关系、平面与平面的位置关系、线面平行的概念、判定定理、性质定理;面面平行的概念、判定定理、性质定理;线面垂直的概念、判定定理、性质定理;面面垂直的概念、判定定理与性质定理;异面垂直、异面直线所成角、线面角与二面角的概念(不同版本出现时间略有不同).

  (3)直线与圆:直线的倾斜角与斜率、斜率公式、直线的方程(点斜式、斜截式、一般式、两点式、截距式)、直线与直线的位置关系(平行、垂直)、平面直角坐标系中的一些公式(两点间距离公式、中点坐标公式、点到直线的距离公式、平行线间的距离公式);圆的标准方程与一般方程、直线与圆的位置关系、圆与圆的'位置关系.

  常用的拓展知识与结论有:截距坐标公式、面积坐标公式、圆上一点的切线方程;圆外一点的切点弦方程;直线系与圆系的相关知识等.

  想不起来,或者不太清楚这些概念与定理的,赶快翻翻教材和笔记吧.

  二、重难点与易错点

  重难点与易错点部分配合必考题型使用,做完必考题型后会对重难点与易错部分部分有更深入的理解.

  (1)多面体的体积转化及点面距离的求法;

  (2)较复杂的三视图;

  (3)球与其它几何体的组合;

  (4)平行与垂直的证明;

  (5)立体几何中的动态问题.

  (6)直线方程的选择与求解,特别要注意斜率不存在的直线;

  (7)直线与圆的位置关系问题;

  (8)直线系相关的问题.

总结数学选修知识点10

  选修4-4数学知识点

  一、选考内容《坐标系与参数方程》高考考试大纲要求:

  1.坐标系:

  ①理解坐标系的作用.

  ②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.

  ③能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.

  ④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.

  2.参数方程:①了解参数方程,了解参数的意义.

  ②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.

  二、知识归纳总结:

  1.伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换:yy,(0).的作用下,点P(x,y)对应到点P(x,y),称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

  2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

  3.点M的极坐标:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为;以极轴Ox为始边,射线OM为终边的xOM叫做点M的极角,记为。有序数对(,)叫做点M的极坐标,记为M(,).极坐标(,)与(,2k)(kZ)表示同一个点。极点O的坐标为(0,)(R).

  4.若0,则0,规定点(,)与点(,)关于极点对称,即(,)与(,)表示同一点。如果规定0,02,那么除极点外,平面内的点可用唯一的极坐标(,)表示;同时,极坐标(,)表示的点也是唯一确定的。

  5.极坐标与直角坐标的互化:2x2y2,xcos,yysin,tan(x0)x

  6.圆的极坐标方程:在极坐标系中,以极点为圆心,r为半径的圆的极坐标方程是r;在极坐标系中,以C(a,0)(a0)为圆心,a为半径的圆的极坐标方程是2acos;在极坐标系中,以C(a,2)(a0)为圆心,a为半径的圆的极坐标方程是2asin;

  7.在极坐标系中,(0)表示以极点为起点的一条射线;(R)表示过极点的一条直线.在极坐标系中,过点A(a,0)(a0),且垂直于极轴的直线l的极坐标方程是cosa.

  8.参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数txf(t),并且对于t的每一个允许值,由这个方程所确定的点M(x,y)都在这条yg(t),曲线上,那么这个方程就叫做这条曲线的`参数方程,联系变数x,y的变数t叫做参变数,的函数简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。xarcos,(为参数).

  9.圆(xa)(yb)r的参数方程可表示为ybrsin.xacos,x2y2(为参数).椭圆221(ab0)的参数方程可表示为abybsin.x2px2,2(t为参数).抛物线y2px的参数方程可表示为y2pt.xxotcos,经过点MO(xo,yo),倾斜角为的直线l的参数方程可表示为(t为yyotsin.222参数).

  10.在建立曲线的参数方程时,要注明参数及参数的取值范围。在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.

总结数学选修知识点11

  导数及其应用

  一.导数概念的引入

  1.导数的物理意义:瞬时速率。一般的,函数yf(x)在xx0处的瞬时变化率是

  x0limf(x0x)f(x0),

  x我们称它为函数yf(x)在xx0处的导数,记作f(x0)或y|xx0,即f(x0)=limx0f(x0x)f(x0)

  x例1.在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:

  s)存在函数关系

  h(t)4.9t26.5t10

  运动员在t=2s时的瞬时速度是多少?解:根据定义

  vh(2)limh(2x)h(2)13.1

  x0x即该运动员在t=2s是13.1m/s,符号说明方向向下

  2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点Pn趋近于P时,直线PT与

  曲线相切。容易知道,割线PPn的斜率是knf(xn)f(x0),当点Pn趋近于P时,

  xnx0函数yf(x)在xx0处的导数就是切线PT的斜率k,即klimx0f(xn)f(x0)f(x0)

  xnx03.导函数:当x变化时,f(x)便是x的一个函数,我们称它为f(x)的导函数.yf(x)的导函数有时也记作y,即f(x)lim

  二.导数的计算

  1.函数yf(x)c的导数2.函数yf(x)x的导数3.函数yf(x)x的导数

  2x0f(xx)f(x)

  x

  4.函数yf(x)1的导数x基本初等函数的导数公式:

  1若f(x)c(c为常数),则f(x)0;

  2若f(x)x,则f(x)x1;

  3若f(x)sinx,则f(x)cosx

  4若f(x)cosx,则f(x)sinx;

  5若f(x)ax,则f(x)axlna6若f(x)e,则f(x)e

  xx1xlna18若f(x)lnx,则f(x)

  xx7若f(x)loga,则f(x)导数的运算法则

  1.[f(x)g(x)]f(x)g(x)

  2.[f(x)g(x)]f(x)g(x)f(x)g(x)

  3.[f(x)f(x)g(x)f(x)g(x)]g(x)[g(x)]

  2复合函数求导

  yf(u)和ug(x),称则y可以表示成为x的函数,即yf(g(x))为一个复合函数yf(g(x))g(x)

  三.导数在研究函数中的应用

  1.函数的`单调性与导数:

  一般的,函数的单调性与其导数的正负有如下关系:

  在某个区间(a,b)内,如果f(x)0,那么函数yf(x)在这个区间单调递增;如果f(x)0,那么函数yf(x)在这个区间单调递减.2.函数的极值与导数

  极值反映的是函数在某一点附近的大小情况.求函数yf(x)的极值的方法是:

  (1)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值;

  (2)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极小值;

  4.函数的最大(小)值与导数

  函数极大值与最大值之间的关系.

  求函数yf(x)在[a,b]上的最大值与最小值的步骤

  (1)求函数yf(x)在(a,b)内的极值;

  (2)将函数yf(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是一个最大值,最小的是最小值.

  四.生活中的优化问题

  利用导数的知识,求函数的最大(小)值,从而解决实际问题

  第二章推理与证明

  考点一合情推理与类比推理

  根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理

  根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.

  类比推理的一般步骤:

  (1)找出两类事物的相似性或一致性;

  (2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);

  (3)一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的

  (4)一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.

  考点二演绎推理(俗称三段论)

  由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.

  考点三数学归纳法

  1.它是一个递推的数学论证方法.

  2.步骤:A.命题在n=1(或n0)时成立,这是递推的基础;B.假设在n=k时命题成立C.证明n=k+1时命题也成立,

  完成这两步,就可以断定对任何自然数(或n>=n0,且nN)结论都成立。

  考点三证明

  1.反证法:

  2.分析法:

  3.综合法:

  第一章数系的扩充和复数的概念考点一:复数的概念

  (1)复数:形如abi(aR,bR)的数叫做复数,a和b分别叫它的实部和虚部.

  (2)分类:复数abi(aR,bR)中,当b0,就是实数;b0,叫做虚数;当a0,b0时,叫做纯虚数.

  (3)复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等.

  (4)共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数.

  (5)复平面:建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴除去原点的部分叫做虚轴。

  (6)两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。

【总结数学选修知识点】相关文章:

高二物理选修一知识点总结04-12

选修三生物知识点总结07-17

化学选修4第二章知识点总结02-07

数学中考知识点总结08-05

重点高中物理选修3-1知识点公式总结06-29

高考数学知识点总结11-06

中考数学知识点总结05-24

初中数学知识点总结04-13

初三数学的知识点总结03-06

初中数学知识点总结10-24

Copyright©2003-2024xianxue.com版权所有