- 相关推荐
数列求和方法总结
总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以帮助我们总结以往思想,发扬成绩,让我们一起认真地写一份总结吧。总结怎么写才是正确的呢?以下是小编收集整理的数列求和方法总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
数列求和方法总结1
教学目标
1.理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题.
(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列,了解等差中项的概念;
(2)正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;
(3)能通过通项公式与图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题.
2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.
3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.
教学建议
(1)知识结构
(2)重点、难点分析
①教学重点是等差数列的定义和对通项公式的认识与应用,等差数列是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.
②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.
(3)教法建议
①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.
②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.
③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.
④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的.一次型( )函数,这与其图像的形状相对应.
⑤有穷等差数列的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷等差数列的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.
⑥等差数列前 项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的兴趣.
⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.
数列求和方法总结2
一、倒序相加法
此法来源于等差数列求和公式的推导方法。
例1. 已知
求
解:
。 ①
把等式①的右边顺序倒过来写,即①可以写成以下式子:
②
把①②两式相加得
二、错位相消法
此法来源于等比数列求和公式的推导方法。
例2. 求数列
的前n项和。
解:设
当
时,
当
时,
①
①式两边同时乘以公比a,得
②
①②两式相减得
三、拆项分组法
把一个数列分拆成若干个简单数列(等差数列、等比数列),然后利用相应公式进行分别求和。
例3. 求数列
的前n项和。
解:设数列的.前n项和为
,则
当
时,
当
时,
说明:在运用等比数列的前n项和公式时,应对q=1与
的情况进行讨论。
四、裂项相消法
用裂项相消法求和,需要掌握一些常见的裂项技巧。如
例4. 求数列
的前n项和。
解:
五、奇偶数讨论法
如果一个数列为正负交错型数列,那么从奇数项和偶数项分别总结出
与n的关系进行求解。
例5. 已知数列
求该数列的前n项和
。
解:
对n分奇数、偶数讨论求和。
①当
时,
②当
时,
六、通项公式法
利用
,问题便转化成了求数列
的通项问题。这种方法不仅思路清晰,而且运算简洁。
例6. 已知数列
求该数列的前n项和
。
解:
即
∴数列
是一个常数列,首项为
七、综合法
这种方法灵活性比较大,平时注意培养对式子的敏锐观察力,尽量把给定数列转化为等差或等比数列来处理。
例7. 已知
求
分析:注意观察到:
其他可依次类推。关键是注意讨论最后的n是奇数还是偶数。
解:①当n为奇数时,由以上的分析可知:
②当n为偶数时,可知:
由①②可得
说明:对于以上的各种方法,大家应注意体会其中所蕴含的分类讨论及化归的数学思想方法。当然,数列求和的方法还有很多,大家平时还应多注意总结。
数列求和方法总结3
一教学知识点:
数列通项与数列求和
二. 教学要求:
掌握数列的通项公式的求法与数列前n 项和的求法。能通过转化的思想把非等差数列与非等比数列转化为两类基本数列来研究其通项与前n项的和。
三. 教学重点、难点:
重点:等差数列与等比数列的求和,及其通项公式的求法。
难点:转化的思想以及转化的途径。
四. 基本内容及基本方法
1、求数列通项公式的.常用方法有:观察法、公式法、待定系数法、叠加法、叠乘法、Sn法、辅助数列法、归纳猜想法等;
(1)根据数列的前几项,写出它的一个通项公式,关键在于找出这些项与项数之间的关系,常用的方法有观察法、通项法,转化为特殊数列法等.
(2)由Sn求an时,用公式an=Sn-Sn-1要注意n≥2这个条件,a1应由a1=S1来确定,最后看二者能否统一.
(3)由递推公式求通项公式的常见形式有:an+1-an=f(n),
=f(n),an+1=pan+q,分别用累加法、累乘法、迭代法(或换元法).
2、数列的前n项和
(1)数列求和的常用方法有:公式法、分组求和法、错位相减法、裂项相消法、倒序求和法等。
求数列的前n项和,一般有下列几种方法:
(2)等差数列的前n项和公式:
Sn= = .
(3)等比数列的前n项和公式:
①当q=1时,Sn= .
②当q≠1时,Sn= .
(4)倒序相加法:将一个数列倒过来排列与原数列相加.主要用于倒序相加后对应项之和有公因子可提的数列求和.
(5)错位相减法:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.
(6)裂项求和法:把一个数列分成几个可直接求和的数列.
方法归纳:①求和的基本思想是“转化”。其一是转化为等差、等比数列的求和,或者转化为求自然数的方幂和,从而可用基本求和公式;其二是消项,把较复杂的数列求和转化为求不多的几项的和。
②对通项中含有(-1)n的数列,求前n项和时,应注意讨论n的奇偶性。
③倒序相加和错位相减法是课本中分别推导等差、等比数列前n项和用到的方法,在复习中应给予重视。
【典型例题】
例1. 已知数列{an}的前n项和Sn=n2-9n.
(1)求证:{an}为等差数列;
(2)求S n的最小值及相应的n;
(3)记数列{
}的前n项和为Tn,求Tn的表达式。
解:(1)n=1时,a1=S1=-8
n≥2时,an=Sn-Sn-1=2n-10
∴ an=2n-10 an+1-an=2
∴ {an}是等差数列.
(2)Sn=n2-9n=(n-
)2-
∴当n=4或n=5时,Sn有最小值-20.
(3)an=2n-10 ∴ | an |=| 2n-10 |
令an≥0
n≥5 ∴ 当n≤4时,| an |=10-2n
Tn=
,当n≥5时,
Tn=-a1-a2-a3-a4+a5+a6+…+an
=(a1+a2+…+an)-(a1+a2+a3+a4)=Sn-2S4
=n2-9n-2×(-20)=n2-9n+40
∴ Tn=
数列求和方法总结4
一、分组转化求和法
若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列构成,则求这个数列的前nxxxSn时可以用分组求和法求解。一般步骤是:拆裂通项――重新分组――求和合并。
例1求Sn=1×4+2×7+3×10+…+n(3n+1)的和
解由和式可知,式中第n项为an=n(3n+1)=3n2+n
∴Sn=1×4+2×7+3×10+…+n(3n+1)
=(3×12+1)+(3×22+2)+(3×32+3)+…+(3n2+n)
=3(12+22+32+…+n2)+(1+2+3+…+n)
=3×16n(n+1)(2n+1)+n(n+1)2
=n(n+1)2
二、析求和法
求一个数列的`前nxxxSn,如果需要对n进行奇偶性讨论或将奇数项、偶数项分组求和再求解,这种方法称为xxx析法。
例2:求和:Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)
分析:观察数列的通项公式an=(-1)n(2n-1)可知Sn与数列项数n的奇偶性有关,故利用xxx析法及分组求和法求解,也可以在xxx析法的基础上利用并项求和法求的结果。
解:当n为偶数时,Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)
=-(1+5+9+…+2n-3)+(3+7+11+…+2n-1)
=-n2(1+2n-3)2+n2(3+2n-1)2
=-n2-n2+n2+n2=n
当n为奇数时,Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)
=-(1+5+9+…+2n-3)+(3+7+11+…+2n-1)
=-n+12(1+2n-1)2+n-12(3+2n-3)2
=-n2+n2+n2-n2=-n
综上所述,Sn=(-1)nn
三、并项求和法
一个数列an的前nxxxSn中,某些项合在一起就具有特殊的性质,因此可以几项结合求和,再求Sn,称之为并项求和法。形如an=(-1)nf(n)的类型,就可以采用相邻两项合并求解。如例3中可用并项求和法求解。
例3:求S=-12+22-32+42-…-992+1002
解S=(-12+22)+(-32+42)+…+(-992+1002)
=(1+2)+(3+4)+…+(99+100)=5050
四、基本公式法
如果一个数列是符合以下某种形式,如等差、等比数列或通项为自然数的平方、立方的,那么可以直接利用以下数列求和的公式求和。
常用公式有
(1)等差数列求和公式:Sn=na1+n(n-1)2d=n(a1+an)2
(2)等比数列求和公式:Sn=na1a1(1-qn)1-q=a1-anq1-q(q=1)(q≠1)
(3)1+2+3+…+n=n(n+1)2
(4)1+3+5+…+2n-1=n2
(5)2+4+6+…+2n=n(n+1)
(6)12+22+32+…+n2=16n(n+1)(2n+1)
(7)13+23+33+…+n3=14n2(n+1)2
例1:已知等比数列an的通项公式是an=12n-1,设Sn是数列an的前nxxx,求Sn。
解:∵an=12n-1∴a1=1,q=12
∴Sn=1+12+14+…+12n-1=1(1-12n)1-12=2-12n-1
五、裂项相消法
如果一个数列an的通项公式能拆分成两项差的形式,并且相加过程中可以互相抵消至只剩下有限项时,这时只需求有限项的和,把这种求数列前nxxxSn的方法叫做裂项相消法。
裂项相消法中常用的拆项转化公式有:
(1)1n(n+1)=1n-1n+1,1n(n+k)=1k(1n-1n+k)
(2)1(2n-1)(2n+1)=12(12n-1-12n+1)
(3)1n(n+1)(n+2)=12[1n(n+1)-1(n+1)(n+2)]
(4)1n+n+1=n+1-n,1n+n+k=1k(n+k-n),其中n∈N,k∈R且k≠0
例5:求数列1,11+2,11+2+3,…,11+2+3+…+n,…的前n和Sn。
解由题知,an=11+2+3+…+n=2n(n+1)=2(1n-1n+1)
∴Sn=1+11+2+11+2+3+…+11+2+3+…+n
=2(1-12)+2(12-13)+2(13-14)+…+2(1n-1n+1)
=2(1-12+12-13+13-14+…+1n-1n+1)
=2(1-1n+1)=2nn+1
数列求和方法总结5
等比数列这个名词是我们在数学中经常会用到的一个名词,我们在初中的时候就开始学习等比数列,但是在升入高中以后可能还是对这一个难题束手无策,在这里,小编就要教教大家如何用等比数列求和,攻克这一个数学难题!
一.等比数列求和的教学基础
1.知识结构
先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前n项.
2.重点、难点分析
教学重点、难点是等比数列前 项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前n项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法.等比数列前n项和公式是分情况讨论的,在运用中要特别注意 q=1和q=1两种情况.
3.学习建议
①本节内容分为两课时,一节为等比数列前 项和公式的推导与应用,一节为通项公式与前 项和公式的综合运用,另外应补充一节数列求和问题.
②等比数列前n项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论
③等比数列前n项和公式的推导的其他方法可以给出,提高学生学习的`兴趣
④编拟例题时要全面,不要忽略 的情况.
⑤通项公式与前n项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大
⑥补充可以化为等差数列、等比数列的数列求和问题.
二、等比数列求和公式
一个数列,如果任意的后一项与前一项的比值是同一个常数,且数列中任何项都不为0,
即:A(n+1)/A(n)=q (n∈N*), 这个数列叫等比数列,其中常数q 叫作公比。
如: 2、4、8、16......2^10 就是一个等比数列,其公比为2, 可写为 an=2×2^(n-1) 通项公式 an=a1×q^(n-1);
1.通项公式与推广式
推广式:an=am×q^(n-m) [^的意思为q的(n-m)次方];
2.求和公式
Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1) S∞=a1/(1-q) (n-> ∞)(|q|<1) (q为公比,n为项数)
3.等比数列求和公式推导
①Sn=a1+a2+a3+...+an(公比为q)
②q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1)
③Sn-q*Sn=a1-a(n+1)
④(1-q)Sn=a1-a1*q^n
⑤Sn=(a1-a1*q^n)/(1-q)
⑥Sn=(a1-an*q)/(1-q)
⑦Sn=a1(1-q^n)/(1-q)
4性质 简介
①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;
②在等比数列中,依次每 k项之和仍成等比数列; 等比数列的性质
③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2;
④ 若G是a、b的等比中项,则G^2=ab(G ≠ 0);
⑤在等比数列中,首项a1与公比q都不为零
三.学习等比数列的方法
1知识与技能目标
理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能初步应用公式解决与之有关的问题.
2.过程与方法目标
通过对公式的研究过程,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质.
3.情感、态度与价值目标
通过学生自主对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,并从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美.
4..教学重点、难点
①重点:等比数列前n项和公式的推导及公式的简单应用. 突出重点的方法:“抓三线、突重点”,即一是知识技能线:问题情境→公 式推导→公式运用;二是过程方法线:从特殊、归纳猜想到一般→错位相减法→数学思想;三是能力线:观察能力→初步解决问题能力
.②难点:错位相减法的生成和等比数列前n项和公式的运用. 突破难点的手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的兴趣,鼓励学生大胆猜想、积极探索,并及时给予肯定;二抓知识的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予适当的提示和指导.
数列求和方法总结6
1.基本公式法
2.错位相消法:
3.分组求和
把一个数列分成几个可以直接求和的数列,然后利用公式法求和。
4.裂项(拆项)求和
把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩下有限项再求和。
5.倒序相加法
根据有些数列的特点,将其倒写后与原数列相加,以达到求和的`目的。
数列求和方法总结7
摘 要:数列求和是高中数学知识中的重点和难点,它在高考中出现的频率高,题型多种多样,考查方式灵活。将数列求和的方法进行总结和归纳能够帮助学生找到其中的解题规律,提高该类型题的成功率。
关键词:高中数学;数列求和;方法;归纳
求数列的前n项和是数列题中的高频考点。它的考查十分灵活,题型变化多样,有以选择题的方式出现,有的则是填空题,甚至还会以一道综合大题的方式进行考查。本文通过用列举典型题的方式,总结归纳了6种常见的数列求和方法,供大家参考。
一、倒序相加法
如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。倒序相加法是数列求和当中应用最广的一种解题方法,它的基本类型可以用公式表示为:a1+an=a2+an-1=a3+an-2=a4+an-3…具体解法见下面的例题。
例:设等差数列{an},公差为d,求证:{an}的前n项和Sn=n(a1+an)/2
解:Sn=a1+a2+a3+…+an①
倒序得:Sn=an+an-1+an-2+…+a1②
①+②得:2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1)
又∵a1+an=a2+an-1=a3+an-2=…=an+a1
∴2Sn=n(a2+an) Sn=n(a1+an)/2
倒序相加法的解题关键就是要能够看到首项和末项之间的关系,这就需学生要有一定的敏感度,一眼就能找准解题的方法,然后就是要细心地做。()因此,做数列题除了要注意总结和归纳解题方法外,大量的习题训练也是十分必要的。
二、用公式法
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。等差数列的基本求和公式为:Sn=(a1+an)n/2;变形公式为Sn=na1+n(n-1)d/2(d为公差)。等比数列的求和公式为:Sn=na1(q=1);Sn=a1(1-qn)/(1-q)=(a1-anq)/(1-q)(q≠1)(q为公比,n为项数)。利用公式来求数列之和是一种比较基本的题型,它的难度不大,只要掌握基本公式,并且具有一定的敏感度就能做对这类型的题。
三、裂项相消法
裂项相消法是数列求和中比较难的一类题型,因为它不好看出数列之间的规律。如果裂项不对,也不能将问题解出。裂项相消法的解题原理是:将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。
四、错位相减法
若在数列{an·bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出{anbn}前n项和。
错位相减法其实并不难,关键是要细心,要能找好两个式子之间的对应项,如果二者相减的时候没有找准对应项,即便思路再对,也会满盘皆输。因此,做任何一道数列题,都要求书写工整,格式规范,以免造成不必要的失分。
五、叠加法
叠加法主要应用于数列{an}满足an+1=an+f(n),其中f(n)在等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的`式子加到一起,经过整理,可求出an,从而求出Sn.
六、分组求和法
分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,最后将其合并的方法。记住了这一类题型的特点,就能准确找到解题思路。
总之,数列求和以其灵活多变的出题方式和较高的错题率成为高中数学中的难点。这类题虽然难,但也并不是无规律可循的。万变不离其宗,教师在讲课当中应该帮助学生多多总结归纳相关的解题技巧和解题方法,并配合适当的试题训练;学生自身也要多思考,可以准备一个错题记录本时常翻看,有助于将这类问题消化吸收,最终将其完全掌握。
浅谈高中数学教学方法新课改下高中数学教学存在的问题及对策在高中数学教学中倡导积极主动的学习方式
数列求和方法总结8
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用a1表示;
项数:等差数列的所有数的个数,一般用n表示;
公差:数列中任意相邻两个数的.差,一般用d表示;
通项:表示数列中每一个数的公式,一般用an表示;
数列的和:这一数列全部数字的和,一般用Sn表示.
基本思路:等差数列中涉及五个量:a1,an,d,n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公
式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an=a1+(n-1)d;
通项=首项+(项数一1)公差;
数列和公式:sn,=(a1+an)n2;
数列和=(首项+末项)项数2;
项数公式:n=(an+a1)d+1;
项数=(末项-首项)公差+1;
公差公式:d=(an-a1))(n-1);
公差=(末项-首项)(项数-1);
关键问题:确定已知量和未知量,确定使用的公式。
【数列求和方法总结】相关文章:
数列求和教学反思04-14
《数列的求和》教学反思06-13
数列的知识点总结04-16
等比数列说课稿11-20
《等差数列》说课稿11-03
数学《等差数列》说课稿03-24
等差数列教学反思04-09
《等差数列》说课稿14篇12-06
《等比数列的前n项和》说课稿12-25