当前位置:贤学网>范文>工作总结> 高中数学导数知识点总结

高中数学导数知识点总结

时间:2024-02-20 06:57:58 工作总结 我要投稿
  • 相关推荐

高中数学导数知识点总结

  总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,让我们来为自己写一份总结吧。那么总结有什么格式呢?以下是小编收集整理的高中数学导数知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学导数知识点总结

高中数学导数知识点总结1

  数学选修2-2导数及其应用知识点必记

  1.函数的平均变化率是什么?答:平均变化率为

  f(x2)f(x1)f(x1x)f(x1)yfx2x1xxx注1:其中x是自变量的改变量,可正,可负,可零。

  注2:函数的平均变化率可以看作是物体运动的平均速度。

  2、导函数的概念是什么?

  答:函数yf(x)在xx0处的瞬时变化率是limf(x0x)f(x0)y,则称limx0xx0x函数yf(x)在点x0处可导,并把这个极限叫做yf(x)在x0处的导数,记作f"(x0)或y"|xx0,即f"(x0)=limf(x0x)f(x0)y.limx0xx0x

  3.平均变化率和导数的几何意义是什么?

  答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。

  4导数的背景是什么?

  答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。

  5、常见的函数导数和积分公式有哪些?函数导函数不定积分ycy"0xn1xdxn1nyxnnN*y"nxn1yaxa0,a1y"alnay"exxaxadxlnaxyexedxexxylogaxa0,a1,x0ylnxy"1xlna1x1xdxlnxy"ysinxy"cosxcosxdxsinxsinxdxcosxycosxy"sinx

  6、常见的导数和定积分运算公式有哪些?答:若fx,gx均可导(可积),则有:和差的导数运算f(x)g(x)f(x)g(x)""f"(x)g"(x)f"(x)g(x)f(x)g"(x)积的导数运算特别地:Cfx"Cf"x商的导数运算f(x)f"(x)g(x)f(x)g"(x)(g(x)0)g(x)2g(x)"1g"(x)特别地:"2gxgx复合函数的导数yxyuux微积分基本定理fxdxab(其中F"xfx)和差的积分运算ba[f1(x)f2(x)]dxf1(x)dxf2(x)dxaabb特别地:积分的区间可加性bakf(x)dxkf(x)dx(k为常数)abbaf(x)dxf(x)dxf(x)dx(其中acb)accb

  7.用导数求函数单调区间的步骤是什么?答:①求函数f(x)的导数f"(x)

  ②令f"(x)>0,解不等式,得x的范围就是递增区间.③令f"(x)

  8.利用导数求函数的最值的步骤是什么?

  答:求f(x)在a,b上的最大值与最小值的步骤如下:⑴求f(x)在a,b上的极值;

  ⑵将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。

  注:实际问题的开区间唯一极值点就是所求的最值点;

  9.求曲边梯形的思想和步骤是什么?

  答:分割近似代替求和取极限(“以直代曲”的思想)

  10.定积分的性质有哪些?

  根据定积分的定义,不难得出定积分的如下性质:

  11.

  ababbbbb性质5若f(x)0,xa,b,则f(x)dx0

  ①推广:[f1(x)f2(x)fm(x)]dxf1(x)dxf2(x)dxfm(x)

  aaaa②推广:f(x)dxf(x)dxf(x)dxf(x)dx

  aac1ckbc1c2b11定积分的取值情况有哪几种?

  答:定积分的值可能取正值,也可能取负值,还可能是0.

  (l)当对应的曲边梯形位于x轴上方时,定积分的值取正值,且等于x轴上方的图形面积;

  (2)当对应的曲边梯形位于x轴下方时,定积分的值取负值,且等于x轴上方图形面积的相反数;

  (3)当位于x轴上方的曲边梯形面积等于位于x轴下方的曲边梯形面积时,定积分的值为0,且等于x轴上方图形的面积减去下方的图形的面积.

  12.物理中常用的微积分知识有哪些?答:(1)位移的导数为速度,速度的导数为加速度。(2)力的积分为功。

  数学选修2-2推理与证明知识点必记

  13.归纳推理的定义是什么?答:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。

  14.归纳推理的思维过程是什么?答:大致如图:

  实验、观察概括、推广猜测一般性结论

  15.归纳推理的特点有哪些?

  答:①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的'一般现象。

  ②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。③归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。

  16.类比推理的定义是什么?

  答:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。

  17.类比推理的思维过程是什么?答:

  观察、比较联想、类推推测新的结论

  18.演绎推理的定义是什么?

  答:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。

  19.演绎推理的主要形式是什么?答:三段论

  20.“三段论”可以表示为什么?

  答:①大前题:M是P②小前提:S是M③结论:S是P。

  其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。

  21.什么是直接证明?它包括哪几种证明方法?

  答:直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。

  22.什么是综合法?

  答:综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。

  23.什么是分析法?答:分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。

  要注意叙述的形式:要证A,只要证B,B应是A成立的充分条件.分析法和综合法常结合使用,不要将它们割裂开。

  24什么是间接证明?

  答:即反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。

  25.反证法的一般步骤是什么?

  答:(1)假设命题结论不成立,即假设结论的反面成立;

  (2)从假设出发,经过推理论证,得出矛盾;

  (3)从矛盾判定假设不正确,即所求证命题正确。

  26常见的“结论词”与“反义词”有哪些?原结论词反义词原结论词至少有一个至多有一个至少有n个至多有n个一个也没有至少有两个至多有n-1个至少有n+1个对任意x不成立p或qp且q反义词存在x使成立p且qp或q对所有的x都成立存在x使不成立

  27.反证法的思维方法是什么?答:正难则反....

  28.如何归缪矛盾?

  答:(1)与已知条件矛盾;(2)与已有公理、定理、定义矛盾;

  (3)自相矛盾.

  29.数学归纳法(只能证明与正整数有关的数学命题)的步骤是什么?nnN答:(1)证明:当n取第一个值时命题成立;00

  (2)假设当n=k(k∈N*,且k≥n0)时命题成立,证明当n=k+1时命题也成立由(1),(2)可知,命题对于从n0开始的所有正整数n都正确注:常用于证明不完全归纳法推测所得命题的正确性的证明。

  数学选修2-2数系的扩充和复数的概念知识点必记

  30.复数的概念是什么?答:形如a+bi的数叫做复数,其中i叫虚数单位,a叫实部,b叫虚部,数集

  Cabi|a,bR叫做复数集。

  规定:abicdia=c且,强调:两复数不能比较大小,只有相等或不相b=d等。实数(b0)

  31.数集的关系有哪些?答:复数Z一般虚数(a0)

  虚数(b0)纯虚数(a0)

  32.复数的几何意义是什么?答:复数与平面内的点或有序实数对一一对应。

  33.什么是复平面?

  答:根据复数相等的定义,任何一个复数zabi,都可以由一个有序实数对

  (a,b)唯一确定。由于有序实数对(a,b)与平面直角坐标系中的点一一对应,因此

  复数集与平面直角坐标系中的点集之间可以建立一一对应。这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。

  34.如何求复数的模(绝对值)?答:与复数z对应的向量OZ的模r叫做复数zabi的模(也叫绝对值)记作z或abi。由模的定义可知:zabia2b2

  35.复数的加、减法运算及几何意义是什么?

  答:①复数的加、减法法则:z1abi与z2cdi,则z1z2ac(bd)i。

  注:复数的加、减法运算也可以按向量的加、减法来进行。

  ②复数的乘法法则:(abi)(cdi)acbdadbci。

  ③复数的除法法则:

  abi(abi)(cdi)acbdbcadicdi(cdi)(cdi)c2d2c2d2其中cdi叫做实数化因子

  36.什么是共轭复数?

  答:两复数abi与abi互为共轭复数,当b0时,它们叫做共轭虚数。

高中数学导数知识点总结2

  ★高中数学导数知识点

  一、早期导数概念————特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)—f(A),发现的因子E就是我们所说的导数f(A)。

  二、17世纪————广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。

  三、19世纪导数————逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε—δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。

  四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。

  高中数学导数要点

  1、求函数的单调性:

  利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

  利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

  反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

  (1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的'x值不构成区间);

  (2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

  (3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

  2、求函数的极值:

  设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

  可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

  (1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的

  变化情况:

  (4)检查f(x)的符号并由表格判断极值。

  3、求函数的最大值与最小值:

  如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的最大值。函数在定义域内的极值不一定唯一,但在定义域内的最值是唯一的。

  求函数f(x)在区间[a,b]上的最大值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;

  (2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值。

  4、解决不等式的有关问题:

  (1)不等式恒成立问题(绝对不等式问题)可考虑值域。

  f(x)(xA)的值域是[a,b]时,

  不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

  f(x)(xA)的值域是(a,b)时,

  不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。

  (2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

  5、导数在实际生活中的应用:

  实际生活求解最大(小)值问题,通常都可转化为函数的最值。在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,在解题时要加以说明。

高中数学导数知识点总结3

  (一)导数第一定义

  设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义

  (二)导数第二定义

  设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第二定义

  (三)导函数与导数

  如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。

  (四)单调性及其应用

  1.利用导数研究多项式函数单调性的一般步骤

  (1)求f(x)

  (2)确定f(x)在(a,b)内符号 (3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

  2.用导数求多项式函数单调区间的一般步骤

  (1)求f(x)

  (2)f(x)>0的解集与定义域的`交集的对应区间为增区间; f(x)<0的解集与定义域的交集的对应区间为减区间

  学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。

高中数学导数知识点总结4

  一、求导数的方法

  (1)基本求导公式

  (2)导数的四则运算

  (3)复合函数的导数

  设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即

  二、关于极限

  1、数列的极限:

  粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如:

  2、函数的极限:

  当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作

  三、导数的概念

  1、在处的导数。

  2、在的导数。

  3。函数在点处的导数的几何意义:

  函数在点处的导数是曲线在处的切线的斜率,

  即k=,相应的切线方程是

  注:函数的导函数在时的函数值,就是在处的导数。

  例、若=2,则=()A—1B—2C1D

  四、导数的综合运用

  (一)曲线的'切线

  函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。由此,可以利用导数求曲线的切线方程。具体求法分两步:

  (1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=

  (2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。

Copyright©2003-2024xianxue.com版权所有