当前位置:贤学网>范文>工作总结> 小学数学知识点总结

小学数学知识点总结

时间:2024-02-07 07:18:57 工作总结 我要投稿

小学数学知识点总结

  总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,快快来写一份总结吧。总结怎么写才不会流于形式呢?以下是小编整理的小学数学知识点总结,仅供参考,大家一起来看看吧。

小学数学知识点总结

小学数学知识点总结1

  第一单元 小数乘法

  1.小数乘整数:意义——求几个相同加数的和的简便运算。

  计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

  2.小数乘小数:意义——就是求这个数的几分之几是多少。

  计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

  规律: 一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。

  3.求近似数的方法一般有三种: ⑴四舍五入法;⑵进一法;⑶去尾法

  4.计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

  5.小数四则运算顺序跟整数是一样的。

  6.运算定律和性质: 加法: 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法: 减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c 乘法: 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c 除法: 除法性质:a÷b÷c=a÷(b×c)

  7.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

  8.小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

  9.除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

  10.在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。五年级数学重要知识点

  11.除法中的变化规律: ①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。 ②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。

  12.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.

  13.小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

  14.从不同的角度观察物体,看到的.形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

  15.在含有字母的式子里,字母中间的乘号可以记作“?”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。

  16.a×a可以写作a?a或a2,读作a的平方。 2a表示a+a

  17.方程:含有未知数的等式称为方程。 使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。

  18.解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

  19.10个数量关系式: 加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商

  20.所有的方程都是等式,但等式不一定都是等式。

  21.公式:长方形:周长=(长+宽)×2 【长=周长÷2-宽; 宽=周长÷2-长】 字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab正方形:周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a 平行四边形:面积=底×高 字母公式: S=ah 三角形:面积=底×高÷2【底=面积×2÷高; 高=面积×2÷底】 字母公式: S=ah÷2 梯形: 面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底; 高=面积×2÷(上底+下底)】

  22.平行四边形面积公式推导:剪拼、平移 平行四边形可以转化成一个长方形; 长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积; 因为长方形面积=长×宽,所以平行四边形面积=底×高。

  23.三角形面积公式推导:旋转 两个完全一样的三角形可以拼成一个平行四边形; 平行四边形的底相当于三角形的底; 平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍; 因为平行四边形面积=底×高,所以三角形面积=底×高÷2

  24.梯形面积公式推导:旋转 两个完全一样的梯形可以拼成一个平行四边形; 平行四边形的底相当于梯形的上下底之和; 平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍; 因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

  25.等底等高的平行四边形面积相等;等底等高的三角形面积相等; 等底等高的平行四边形面积是三角形面积的2倍。

  26.长方形框架拉成平行四边形,周长不变,面积变小。

  27.组合图形:转化成已学的简单图形,通过加、减进行计算。

  28.平均数=总数量÷总份数

  29.中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。

  30.数不仅可以用来表示数量和顺序,还可以用来编码。

  31.由6位组成: 前2位表示省(直辖市、自治区) 前3位表示邮区 前4位表示县(市) 最后2位表示投递局

  32.身份证号码:18位 倒数第二位的数字用来表示性别,单数表示男,双数表示女。

小学数学知识点总结2

  1.奇偶性

  问题

  奇+奇=偶奇×奇=奇

  奇+偶=奇奇×偶=偶

  偶+偶=偶偶×偶=偶

  2.位值原则

  形如:abc=100a+10b+c

  3.数的整除特征:

  整除数特征

  2末尾是0、2、4、6、8

  3各数位上数字的和是3的倍数

  5末尾是0或5

  9各数位上数字的'和是9的倍数

  11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数

  4和25末两位数是4(或25)的倍数

  8和125末三位数是8(或125)的倍数

  7、11、13末三位数与前几位数的差是7(或11或13)的倍数

  4.整除性质

  ①如果c|a、c|b,那么c|(ab)。

  ②如果bc|a,那么b|a,c|a。

  ③如果b|a,c|a,且(b,c)=1,那么bc|a。

  ④如果c|b,b|a,那么c|a.

  ⑤a个连续自然数中必恰有一个数能被a整除。

  5.带余除法

  一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r

  当r=0时,我们称a能被b整除。

  当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r

小学数学知识点总结3

  (一)数与计算

  (1)20以内数的认识。加法和减法。数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合式题

  (2)100以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。

  (二)量与计量

  钟面的认识(整时)。人民币的认识和简单计算。

  (三)几何初步知识

  长方体、正方体、圆柱和球的'直观认识。

  长方形、正方形、三角形和圆的直观认识。

  (四)应用题

  比较容易的加法、减法一步计算的应用题。多和少的应用题(抓有效信息的能力)

  (五)实践活动

  选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。

小学数学知识点总结4

  棱锥:棱锥是小学数学的基础内容,小学毕业试题中分值约为4分,多以选择题,填空题,判断题的形式出现,难易度属于简单。近几年主要考察:①棱锥的体积问题。②棱锥的侧面积问题。突破方法:牢固掌握有关棱锥的概念,边角之间的关系。这个要通过一定量的练习来掌握。

  认识位置与方向:认识位置与方向是小学数学的基础内容,小学毕业试题中分值约为3-6分,多以选择题,填空题,简答题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①给出三视图,说出组成物体最少或最多立方体的个数。②给出物体,画出三视图。突破方法:①平时注意积累。②熟练掌握三视图的画法。

  图形的直观认识:图形的直观认识是小学数学的基础内容,小学毕业试题中分值约为6-12分,多以选择题,填空题,证明题的形式出现,难易度属于中等。主要考察一下几个方面:①圆的问题,多数是计算题。②三角形的计算问题。突破方法:①对圆的各个性质熟记,能简单画图。②熟练掌与三角形有关的性质等等。

  直线和线段:直线和线段是小学数学的'基础内容,小学毕业试题中分值约为4-8分,多以选择题,填空题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①线段长度的计算。②数轴上点的距离问题。突破方法:①掌握有关线段的比,线段的中点的概念。②熟练掌握数轴概念。

  角的初步认识:角的初步认识是小学数学的基础内容,小学数学试题中分值约为3-6分,多以选择题,填空题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①角的分类。②角的计算。突破方法:①牢固掌握有关角的概念。②熟练掌握角的计算问题,特别是是多个角的问题。

  长方形与正方形:长方形与正方形是小学数学的基础内容,小学毕业试题中分值约为5-10分,多以选择题,填空题,解答题的形式出现,难易度属于中等。近几年主要考察一下几个方面:①面积和周长问题。②体积,边长问题。突破方法:①牢固掌握有关长方形与正方形的概念:如边,对边,角等,特别是对角线的概念。②熟练掌握长方形与正方形的各种性质。

  平行四边形:平行四边形是小学数学的基础内容,小学毕业试题中分值约为4-8分,多以选择题,填空题,解答题的形式出现,难易度属于中等。近几年主要考察一下两个个方面:①平行四边形的周长与面积。②等腰梯形的周长和面积。突破方法:①牢固掌握有关平行四边形的性质。②等腰梯形的性质等等。三角形:三角形是小学几何的基础内容,也是最重要的部分之一。小学试题中分值约为7-13分,证明题的形式出现,难易度属于中等。近几年主要考察一下几个方面:①三角形的内角和,三角形的外角和,三角形的外角等等。②多边形的内角和及组合图形等等。突破方法:①牢固掌握有三角形的概念:如内角和,外角和,外角等,特别是三角形的各边之间的关系。②熟练掌握多边形的内角和,正多边形有关角的运算。在证明过程中特别注意步骤的合理性。

  圆:圆是小学数学的基础内容,小学毕业试题中分值约为4-8分,多以选择题,填空题,解答题的形式出现,难易度属于中等。近几年主要考察一下几个方面:①圆的面积。②圆的周长,有时用会降低题目的难度。突破方法:①牢固掌握有关圆的性质。②熟练掌握扇形,环形的面积公式。

  轴对称图形:轴对称图形是小学数学基础内容,小学毕业试题中分值约为4分,多以选择题,判断题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①图形有几条对称轴。②轴对称和中心对称的综合应用。突破方法:①牢固掌握有关轴对称图形的概念。②平时注意积累,会区分轴对称图形和中心对称图形。

  作图题(操作题):作图题(操作题)是小学数学的基础内容,小学毕业试题中分值约为6分,多以选择题,填空题,简答题的形式出现,难易度属于难,近几年分值由增大的趋势。近几年主要考察一下几个方面:①图形的旋转问题。②影长问题。③平移图像的问题。突破方法:作图题试题开放,联系实际,要求学生进行多方位,多角度,多层次的探究,考查了学生思维的灵活性,发散性,创新性,平时注意动手总结。

  扩展阅读:

小学数学知识点总结5

  (一)口算除法

  1、整十数除整十数或几百几十的数的口算方法。

  (1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60

  (2)利用表内除法计算。利用除法运算的性质:将被除数和除数同时扩大或缩小相同的倍数,商不变。如:200÷50想20÷5=4,所以200÷50=4。

  2、两位数除两位数或三位数的估算方法:除法估算一般是把算式中不是整十数或几百几十的数用“四舍五入”法估算成整十数或几百几十的数,再进行口算。注意结果用“≈”号。

  (二)笔算除法

  1、除数是两位数的笔算除法计算方法:从被除数的高位除起,先用除数试除被除数的前两位,如果前两位数比除数小,就看前三位。除到被除数的哪一位,商就写在那一位的上面。每次除后余下的数必须比除数小。

  2、除数不是整十数的两位数的除法的试商方法:如果除数是一个接近整十数的两位数,就用“四舍五入”法把除数看做与它接近的整十数试商,也可以把除数看做与它接近的几十五,再利用一位数的'乘法直接确定商。

  3、商一位数:

  (1)两位数除以整十数,如:62÷30;

  (2)三位数除以整十数,如:364÷70

  (3)两位数除以两位数,如:90÷29(把29看做30来试商)

  (4)三位数除以两位数,如:324÷81(把81看做80来试商)

  (5)三位数除以两位数,如:104÷26(把26看做25来试商)

  (6)同头无除商八、九,如:404÷42(被除数的位和除数的位一样,即“同头”,被除数的前两位除以除数不够除,即“无除”,不是商8就是商9。)

  (7)除数折半商四五,如:252÷48(除数48的一半24,和被除数的前两位25很接近,不是商4就是商5。)

  4、商两位数:(三位数除以两位数)

  (1)前两位有余数,如:576÷18

  (2)前两位没有余数,如:930÷31

  5、判断商的位数的方法:

  被除数的前两位除以除数不够除,商是一位数;被除数的前两位除以除数够除,商是两位数。

  (三)商的变化规律

  1、商变化:

  (1)被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。

  (2)除数不变,被除数乘(或除以)几(0除外)商也乘(或除以)相同的数。

  2、商不变:被除数和除数同时乘(或除以)相同的数(0除外),商不变。

  (四)简便计算:同时去掉同样多的0,如9100÷700=91÷7=13

小学数学知识点总结6

  1、上、下

  (1)在具体场景中理解上、下的含义及其相对性。

  (2)能比较准确地确定物体上下的方位,会用上、下描述物体的相对位置。

  (3)培养学生初步的空间观念。

  2、前、后

  (1)在具体场景中理解前、后、最×的含义,以及前后的相对性。

  (2)能比较准确地确定物体前后的方位,会用前、后、最前、最后描述物体的相对位置。

  (3)培养学生初步的空间观念。

  加减法

  (一)本单元知识网络:

  (二)各课知识点:

  有几枝铅笔(加法的`认识)

  知识点:

  1、初步了解加法的含义,会读、写加法算式,感悟把两个数合并在一起求一共是多少,用加法计算;

  2、初步尝试选择恰当的方法进行5以内的加法口算。

  3、第一次出现了图形应用题,要让学生学会看图形应用型题目,理解题目的意思。

  有几辆车(初步认识加法的交换律)

  3、左、右

  (1)在具体场景中理解左、右的含义及其相对性。

  (2)能比较准确地确定物体左右的方位,会用左、右描述物体的位置。

  (3)培养学生初步的空间观念。

  4、位置

  (1)明确“横为行、竖为列”,并知道“第几行第几个”、“第几组第几个”的含义。

  (2)在具体情境中,会用2个数据(2个维度)描述人或物体的具体位置。

  (3)在具体情境中,能依据2个维度的数据找到人或物体的具体位置。

小学数学知识点总结7

  小学数学知识点全总结之一:运算定律

  加法交换律 a+b=b+a

  结合律 (a+b)+c=a+(b+c)

  减法性质 a-b-c=a-(b+c)

  a-(b-c)=a-b+c

  乘法交换律 a×b=b×a

  结合律 (a×b)×c=a×(b×c)

  分配律 (a+b)×c=a×c+b×c

  除法性质 a÷(b×c)=a÷b÷c

  a÷(b÷c)=a÷b×c

  (a+b)÷c=a÷c+b÷c

  (a-b)÷c=a÷c-b÷c

  商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)

  ■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。

  推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍。

  一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍。

  ■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

  推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍。

  被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍。

  ■利用积的变化规律和商不变规律性质可以使一些计算简便。但在有余数的除法中要注意余数。

  如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的.余数1是被缩小100被后的,所以还原成原来的余数应该是100。

  小学数学知识点全总结之二:简易方程

  ■用字母表示数

  用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的一般规律。

  ■用字母表示数的注意事项

  1、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写。数与数相乘,乘号不能省略。

  2、当1和任何字母相乘时,“ 1” 省略不写。

  3、数字和字母相乘时,将数字写在字母前面。

  ■含有字母的式子及求值

  求含有字母的式子的值或利用公式求值,应注意书写格式。

  ■等式与方程

  表示相等关系的式子叫等式。

  含有未知数的等式叫方程。

  判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式。所以,方程一定是等式,但等式不一定是方程。

  ■方程的解和解方程

  使方程左右两边相等的未知数的值,叫方程的解。

  求方程的解的过程叫解方程。

  在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x。

  ■解方程的方法

  1、直接运用四则运算中各部分之间的关系去解。如x-8=12

  加数+加数=和 一个加数=和-另一个加数

  被减数-减数=差 减数=被减数-差 被减数=差+减数

  被乘数×乘数=积 一个因数=积÷另一个因数

  被除数÷除数=商 除数=被除数÷商 被除数=除数×商

  2、先把含有未知数x的项看作一个数,然后再解,如3x+20=41

  先把3x看作一个数,然后再解。

  3、按四则运算顺序先计算,使方程变形,然后再解。如2.5×4-x=4.2,要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解。

  4、利用运算定律或性质,使方程变形,然后再解。如:2.2x+7.8x=20

  先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解。

小学数学知识点总结8

  角:

  (1)角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。

  这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

  (2)角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。

  所旋转射线的端点叫做角的.顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

  角的符号:∠

  角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。

  在动态定义中,取决于旋转的方向与角度。

  角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。

  以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  (1)锐角:大于0°,小于90°的角叫做锐角。

  (2)直角:等于90°的角叫做直角。

  (3)钝角:大于90°而小于180°的角叫做钝角。

  乘法:

  乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。

  乘法算式中各数的名称:

  “×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

  例:10(因数)×(乘号)200(因数)=(等于号)20xx(积)

  平行:

  在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。

  垂直:

  两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

  平行四边形:

  在同一平面内有两组对边分别平行的四边形叫做平行四边形。

  梯形:

  梯形是指一组对边平行而另一组对边不平行的四边形。

  平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。

  除法:

  除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。

小学数学知识点总结9

  一、图形的变换

  图形变换的基本方式是平移、对称和旋转。

  1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

  (1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。

  (2)圆有无数条对称轴。

  (3)对称点到对称轴的距离相等。

  (4)轴对称图形的特征和性质:

  ①对应点到对称轴的距离相等;

  ②对应点的连线与对称轴垂直;

  ③对称轴两边的图形大小、形状完全相同。

  2、对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。

  3、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

  (1)生活中的旋转:电风扇、车轮、纸风车

  (2)旋转要明确绕点,角度和方向。

  (3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。

  旋转的性质:

  (1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;

  (2)其中对应点到旋转中心的距离相等;

  (3)旋转前后图形的大小和形状没有改变;

  (4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;

  (5)旋转中心是唯一不动的点。

  4、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数

  二、因数和倍数

  1、整除:被除数、除数和商都是自然数,并且没有余数。整数与自然数的关系:整数包括自然数。

  2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

  例:12是6的倍数,6是12的因数。

  (1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。

  (2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的因数的求法:成对地按顺序找。

  (3)一个数的倍数的个数是无限的,最小的倍数是它本身。一个数的倍数的求法:依次乘以自然数。

  (4)2、3、5的倍数特征

  1)个位上是0,2,4,6,8的数都是2的倍数。

  2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  3)个位上是0或5的数,是5的倍数。

  4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

  同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

  5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

  3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。

  如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等

  4、自然数按能不能被2整除来分:奇数、偶数。

  奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。

  偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。最小的奇数是1,最小的偶数是0.

  关系:奇数+、-偶数=奇数奇数+、-奇数=偶数偶数+、-偶数=偶数。

  5、自然数按因数的个数来分:质数、合数、1、0四类.质数(或素数):只有1和它本身两个因数。

  合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。1:只有1个因数。“1”既不是质数,也不是合数。0:

  最小的质数是2,最小的合数是4,连续的两个质数是2、3。每个合数都可以由几个质数相乘得到,质数相乘一定得合数。20以内的质数:有8个(2、3、5、7、11、13、17、19)

  100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、

  43、47、53、59、61、67、71、73、79、83、89、97

  100以内找质数、合数的技巧:

  看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

  关系:奇数×奇数=奇数质数×质数=合数

  6、最大、最小

  A的最小因数是:1;最小的奇数是:1;A的最大因数是:A;最小的偶数是:0;A的最小倍数是:A;最小的质数是:2;最小的自然数是:0;最小的合数是:4;

  7、分解质因数:把一个合数分解成多个质数相乘的形式。用短除法分解质因数(一个合数写成几个质数相乘的形式)。...

  比如:30分解质因数是:(30=2×3×5)

  8、互质数:公因数只有1的两个数,叫做互质数。

  两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和8

  两数互质的特殊情况:

  ⑴1和任何自然数互质;

  ⑵相邻两个自然数互质;

  ⑶两个质数一定互质;

  ⑷2和所有奇数互质;

  ⑸质数与比它小的合数互质;

  9、公因数、最大公因数

  几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。

  用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。

  如果两数是倍数关系时,那么较小的数就是它们的最大公因数。如果两数互质时,那么1就是它们的最大公因数。

  10、公倍数、最小公倍数

  几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

  用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。如果两数互质时,那么它们的积就是它们的最小公倍数。

  11、求最大公因数和最小公倍数方法

  用12和16来举例1、

  求法一:(列举求同法)

  最大公因数的求法:

  12的因数有:1、12、2、6、3、416的因数有:1、16、2、8、4最大公因数是4

  最小公倍数的求法:

  12的倍数有:12、24、36、48、16的倍数有:16、32、48、最小公倍数是482、求法二:(分解质因数法)

  12=2×2×316=2×2×2×2

  最大公因数是:2×2=4(相同乘)

  最小公倍数是:2×2×3×2×2=48(相同乘×不同乘)

  三长方体和正方体

  1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个

  面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。长方体特点:

  (1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

  (2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

  2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

  正方体特点:

  (1)正方体有12条棱,它们的长度都相等。

  (2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

  (3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。相同点长方体面不同点棱相对的棱的长度都相等都有6个面,6个面都是长方形。12条棱,(有可能有两个相对的面是正方形)。正方体

  8个顶点。6个面都是正方形。12条棱都相等。3、长方体、正方体有关棱长计算公式:

  长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b

  正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷12

  4、长方体或正方体6个面和总面积叫做它的表面积。

  长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2

  S=2(ab+ah+bh)-abS=2(ah+bh)+ab

  无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)贴墙纸正方体的表面积=棱长×棱长×6S=a×a×6用字母表示:S=6a2

  生活实际:

  油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。

  注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

  注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

  5、物体所占空间的大小叫做物体的体积。

  长方体的体积=长×宽×高V=abh长=体积÷宽÷高a=V÷b÷h

  宽=体积÷长÷高b=V÷a÷h高=体积÷长÷宽h=V÷a÷b

  正方体的体积=棱长×棱长×棱长

  V=a×a×a=a3读作“a的立方”表示3个a相乘,(即aaa)

  长方体或正方体底面的面积叫做底面积。

  长方体(或正方体)的体积=底面积×高用字母表示:V=Sh(横截面积相当于底面积,长相当于高)。

  注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

  6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

  固体一般就用体积单位,计量液体的体积,如水、油等。常用的容积单位有升和毫升也可以写成L和ml。

  1升=1立方分米1毫升=1立方厘米1升=1000毫升(1L=1dm31ml=1cm3)

  长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

  但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

  注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

  形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。排水法的公式:V物体=V现在-V原来也可以V物体=S×(h现在-h原来)V物体=S×h升高× 进率

  8、【体积单位换算】大单位小单位

  ÷进率小单位大单位

  进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)1立方分米=1000立方厘米=1升=1000毫升

  1立方厘米=1毫升

  1平方米=100平方分米=10000平方厘米1平方千米=100公顷=1000000平方米

  注意:长方体与正方体关系

  把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

  重量单位进率,时间单位进率,长度单位进率× 进率

  【单位换算】大单位小单位÷进率小单位大单位

  长度单位:1千米=1000米1分米=10厘米1厘米=10毫米1分米=100毫米1米=10分米=100厘米=1000毫米(相邻单位进率10)

  面积单位:1平方千米=100公顷1平方米=100平方分米

  1平方分米=100平方厘米1公顷=10000平方米(平方相邻单位进率100)质量单位:1吨=1000千克1千克=1000克

  人民币:1元=10角1角=10分1元=100分

  四分数的意义和性质

  1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,

  这样的一份或几份都可以用分数来表示。

  2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)

  3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如

  数单位是。

  5145的分

  4、分数与除法A÷B=

  5、真分数和假分数、带分数

  AB(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=

  1、真分数:分子比分母小的分数叫真分数。真分数

  (2)分数化为小数:

  方法一:把分数化为分母是10、100、1000

  如:

  310=0.3=

  53610=0.6

  14=

  25100=0.25

  方法二:用分子÷分母

  如:

  34=3÷4=0.75

  (3)带分数化为小数:

  先把整数后的分数化为小数,再加上整数

  如:2

  310=2+0.3=2.3

  12、比分数的大小:分母相同,分子大,分数就大;分子相同,分母小,分数才大。

  分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。

  13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

  1218=0.5

  3814=0.25=0.75=0.2=0.4=0.6

  455558312345=0.8

  =0.125=0.375=0.625

  78=0.875

  120=0.05

  125=0.04。

  14、两个数互质的特殊判断方法:

  ①1和任何大于1的自然数互质。

  ②2和任何奇数都是互质数。

  ③相邻的两个自然数是互质数。

  ④相邻的两个奇数互质。

  ⑤不相同的两个质数互质。

  ⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

  15、求最大公因数的方法:

  ①倍数关系:最大公因数就是较小数。

  ②互质关系:最大公因数就是1

  ③一般关系:从大到小看较小数的.因数是否是较大数的因数。

  16、分数知识图解:

  分数的产生

  分数的意义分数与意义:把单位1平均分成几份,表示其中的一份或几份。

  分数与除法:分子(被除数),分母(除数),分数值(商)。真分数真分数小于1

  真分数与假分数假分数假分数大于1或等于1

  带分数(整数部分和真分数)

  假分数化带分数、整数(分子除以分母,商作整数部分,余数作分子)

  分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数,

  分数的基本性质分数的大小不变。

  通分、通分子:化成分母不同,大小不变的分数(通分)

  最大公因数

  约分求最大公因数

  最简分数分子分母互质的分数(最简真分数、最简假分数)约分及其方法最小公倍数

  通分求最小公倍数

  分数比大小(通分、通分子、化成小数)通分及其方法

  小数化分数小数化成分母是10、100、1000的分数再化简

  分数和小数的互化

  分数化小数分子除以分母,除不尽的取近似值

  五分数的加法和减法

  (1)同分母分数加、减法(分母不变,分子相加减)

  1、分数数的加法和减法

  (2)异分母分数加、减法(通分后再加减)

  (3)分数加减混合运算:同整数。

  (4)结果要是最简分数

  2、带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得的结果

  合并起来。

  附:具体解释

  (一)同分母分数加、减法

  1、同分母分数加、减法:

  同分母分数相加、减,分母不变,只把分子相加减。

  2、计算的结果,能约分的要约成最简分数。

  (二)异分母分数加、减法

  1、分母不同,也就是分数单位不同,不能直接相加、减。

  2、异分母分数的加减法:

  异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。

  (三)分数加减混合运算

  1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。

  在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

  2、整数加法的交换律、结合律对分数加法同样适用。

  3、六统计与数学广角

  众数一组数据中出现次数最多的数叫众数。众数能够反映一组数据的集中情况。

  统计在一组数据中,众数可能不止一个,也可能没有众数。复式折线统计图

  综合应用打电话的最优方案

  121-12

  1612-13

  11213-14

  1201 -15

  1、众数:一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。

  众数能够反映一组数据的集中情况。

  在一组数据中,众数可能不止一个,也可能没有众数。

  2、中位数:

  (1)按大小排列;

  (2)如果数据的个数是单数,那么最中间的那个数就是中位数;

  (3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。

  3、平均数的求法:总数÷总份数=平均数

  4、一组数据的一般水平:

  (1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。

  (2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。

  (3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。

  4、平均数、中位数和众数的联系与区别:

  ①平均数:

  一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。容易受极端数据的影响,表示一组数据的平均情况。②中位数:

  将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。它不受极端数据的影响,表示一组数据的一般情况。③众数:

  在一组数据中出现次数最多的数叫做这组数据的众数。它不受极端数据的影响,表示一组数据的集中情况。

  5、统计图:我们学过条形统计图、复式折线统计图。

  条形统计图优点:条形统计图能形象地反映出数量的多少。

  折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。

  注:

  ①画图时注意:一“点”(描点)、二“连”(连线)三“标”(标数据)。

  ②要用不同的线段分别连接两组数据中的数。

  6、打电话:规律人人不闲着,每人都在传。(技巧:已知人数依次×2)

  (1)逐个法:所需时间最多。

  (2)分组法:相对节约时间。

  (3)同时进行法:最节约时间。

  七数学广角

  用天平找次品规律:

  1、把所有物品尽可能平均地分成3份,(如余1则放入到最后一份中;如余2则分别放入到前两份中),保证找出次品而且称的次数一定最少。

  2、数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次4~9个物体,保证能找出次品需要测的次数是2次10~27个物体,保证能找出次品需要测的次数是3次28~81个物体,保证能找出次品需要测的次数是4次82~243个物体,保证能找出次品需要测的次数是5次

  244~729个物体,保证能找出次品需要测的次数是6次

  3、找次品规律

  12345次数

  33×33×3×33×3×3×33×3×3×3×3

  392781243次品个数

小学数学知识点总结10

  时分秒

  1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。

  2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。

  3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是( 1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

  4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。

  5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。

  6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。

  7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。

  8、公式。(每两个相邻的时间单位之间的进率是60)

  1时=60分1分=60秒

  半时=30分60分=1时

  60秒=1分30分=半时

  万以内的加法和减法

  1、认识整千数(记忆:10个一千是一万)

  2、读数和写数(读数时写汉字写数时写阿拉伯数字)

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续的两个0,都只读一个0。

  3、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。

  4、求一个数的近似数:

  记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。

  最大的三位数是位999,最小的三位数是100,最大的四位数是9999,最小的四位数是1000。最大的三位数比最小的四位数小1。

  5、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

  6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

  7、公式

  和=加数+另一个加数

  加数=和-另一个加数

  减数=被减数-差

  被减数=减数+差

  差=被减数-减数

  测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

  3、1枚1分的'硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  4、在计算长度时,只有相同的长度单位才能相加减。

  小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。

  5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10 )

  ①进率是10:

  1米=10分米, 1分米=10厘米,

  1厘米=10毫米, 10分米=1米,

  10厘米=1分米, 10毫米=1厘米,

  ②进率是100:

  1米=100厘米, 1分米=100毫米,

  100厘米=1米, 100毫米=1分米

  ③进率是1000:

  1千米=1000米, 1公里==1000米,

  1000米=1千米, 1000米=1公里

  6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;

  把千克换算成吨,是在数字的末尾去掉3个0。

  7、相邻两个质量单位进率是1000。

  1吨=1000千克1千克=1000克

  1000千克= 1吨1000克=1千克

  倍的认识

  1、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数

  2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍

  多位数乘一位数

  1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)

  2、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。

  3、因数末尾有几个0,就在积的末尾添上几个0。

  4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

  公式:速度×时间=路程

  每节车厢的人数×车厢的数量=全车的人数

  5、(关于“大约)应用题:

  ①条件中出现“大约”,而问题中没有“大约”,求准确数。→(=)

  ②条件中没有,而问题中出现“大约”。求近似数,用估算。→(≈)

  ③条件和问题中都有“大约”,求近似数,用估算。→(≈)

  四边形

  1、有4条直的边和4个角封闭图形我们叫它四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的平行四边形。

  6、平行四边形的特点:

  ①对边相等、对角相等。

  ②平行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、公式。

  正方形的周长=边长×4

  正方形的边长=周长÷4,

  长方形的周长=(长+宽)×2

  长方形的长=周长÷2-宽,

  长方形的宽=周长÷2-长

  分数的初步认识

  1、把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

  3、①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的分数就小。

  4、①相同分母的分数相加、减:分母不变,只和分子相加、减。

  ② 1与分数相减:1可以看作是与减数分母相同的,同分子分母的分数。

小学数学知识点总结11

  数列求和:

  等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

  基本概念:首项:等差数列的'第一个数,一般用a1表示;

  项数:等差数列的所有数的个数,一般用n表示;

  公差:数列中任意相邻两个数的差,一般用d表示;

  通项:表示数列中每一个数的公式,一般用an表示;

  数列的和:这一数列全部数字的和,一般用Sn表示。

  基本思路:等差数列中涉及五个量:a1,an,d,n,sn,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

  基本公式:通项公式:an=a1+(n-1)d;

  通项=首项+(项数一1)×公差;

  数列和公式:sn,=(a1+an)×n÷2;

  数列和=(首项+末项)×项数÷2;

  项数公式:n=(an+a1)÷d+1;

  项数=(末项-首项)÷公差+1;

  公差公式:d=(an-a1))÷(n-1);

  公差=(末项-首项)÷(项数-1);

  关键问题:确定已知量和未知量,确定使用的公式

小学数学知识点总结12

  一、圆的特征

  1、圆是平面内封闭曲线围成的平面图形。

  2、圆的特征:外形美观,易滚动。

  3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

  圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

  半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

  直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

  同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

  4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

  5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

  有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

  有二条对称轴的图形:长方形

  有三条对称轴的图形:等边三角形

  有四条对称轴的图形:正方形

  有无条对称轴的图形:圆,圆环

  6、画圆

  (1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。

  二、圆的周长:

  围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

  1、圆的周长总是直径的三倍多一些。

  2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

  即:圆周率π=周长÷直径≈3.14

  所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr

  圆周率π是一个无限不循环小数,3.14是近似值。

  3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

  4、半圆周长=圆周长一半+直径=πr+d

  三、圆的面积s

  1、圆面积公式的推导

  如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

  圆的半径=长方形的宽

  圆的周长的一半=长方形的.长

  长方形面积=长×宽

  所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)

  S圆=πr×r=πr2

  2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。

  周长相同时,圆面积,利用这一特点,篮子、盘子做成圆形。

  3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

  4、环形面积=大圆–小圆=πR2-πr2

  扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

  5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

  一个圆的半径增加a厘米,周长就增加2πa厘米。

  一个圆的直径增加b厘米,周长就增加πb厘米。

  6、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。

  7、常用数据

  π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

小学数学知识点总结13

  一、知识框架

  一级知识点数与代数二级知识点数的运算三级知识点

  1、列竖式计算除法。

  2、两位数除以一位数;

  除法的验算

  3、一步计算的问题

  4、两步计算的问题

  1、质量单位千克、克数与代数常见的量

  2、千克、克之间的换算,简单的实际问题

  3、24时计时法空间与图形空间与图形统计与概率图形的认识

  从三个方向观察用小正方体搭成的立体图形形状

  1.周长的认识

  2.长方形、正方形的周长计算描述事件发生的可能性。

  二、期末知识点

  第一单元除法(除法是乘法的逆运算)

  两位数除以一位数(商是两位数)的除法。是在二年级(上册)表内除法和二年级(下册)有余数除法的基础上安排的。

  1.计算:列竖式计算除法。

  2.口算:被除数十位和个位上的数分别除以除数都没有余数的除法,包括整十数除以一位数商是整十数。

  3.笔算:两位数除以一位数;除法的验算(用乘法验算)。

  4.估算:估计两位数除以一位数的商是几十多。

  5.一步计算的问题:在解决的实际问题中体会数量关系。总价÷单价=数量总价÷数量=单价

  6.两步计算的问题:先求总和或剩余是多少,再平均分的实际问题。

  练习:

  (1)用竖式计算,并验算:62÷266÷672÷347÷7

  (2)口算:36÷360÷268÷290÷3

  (3)列竖式计算:39÷389÷467÷274÷3

  (4)你能估算下面各题的商各是几十多吗?64÷584÷395÷481÷3

  (5)王老师用72元买笔记本,如果每本单价是2元,那么能买多少本?李老师用60元买了20本笔记本,那么每本笔记本多少钱?

  (6)一副乒乓球拍26元,一个乒乓球2元,用50元买一副乒乓球拍,剩下的钱能够买几个乒乓球?第二单元认数1.认数、读数、写数。

  整千数:数位与顺序,认、读、写数,口算整千数的加、减法,解决实际问题。非整千数:认、读、写数,口算整千数加整百数及相应的减法,按顺序整理数。

  练习:

  (1)口算:201+4000800030006000201000+100

  (2)写一写:两个千加两个百加一个十是多少?

  (3)三千零二是由几个千和几个一组成?

  (4)9670是()位数,它的最高位是()位,7在()位上,个位上是()。

  2.大小比较

  比较大小时的数学思考,比较大小的实际应用,非整千数最接近几千。

  练习:

  比较大小:3650和2520,7890和8790第三单元千克和克

  千克和克都是质量单位,物体含有物质的多少是它的质量。我国人民在生活中习惯以“物体有多重”代替“质量是多少”,因此没有使用“质量”这个词,仍然讲“有多重”。

  1.称一个物体有多重,一般用千克为单位。

  2.净含量是指包装袋内物品实际有多重。

  3.千克可以用KG表示,又叫公斤。

  4.从秤上读出物品的重量。

  5.称比较轻的物品,一般用克为单位。

  6.认识天平。

  7.千克和克之间的关系。1千克=1000克。

  练习

  (1)一袋盐重500克,两袋盐重()克?

  (2)2千克=()克

  (3)9000克=()千克第四单元加和减

  1.口算两位数加、减。解决与“倍”或“差”有关的两步计算实际问题。

  练习

  口算:44+2532+5714+6876642.画线段图解决问题。

  练习

  手套的价格是12元,帽子的价格是手套的3倍,你能用线段画出来并算出帽子是多少钱吗?第五单元24时记时法。

  1.24时记时法及它与普通记时法(12时记时法)的联系

  2.联系实际问题求经过时间的基本思路与方法。包括:求整时到整时的经过时间,求非整点时刻间的经过时间。(利用线段图)。

  求经过时间:

  记忆:结束时刻开始时刻=经过时间到达的时刻出发的时刻=经过时间3.两种计时方式的转化。

  普通记时法与24时记时法的互相转化普通记时法24时记时法凌晨1时1时

  早晨5时5时上午8时8时中午12时12时下午1时13时下午2时14时晚上6时18时晚上7时19时晚上8时20时晚上9时21时

  深夜12时24时(也是第二天的0时)

  记忆:中午12时以后的时刻,用24时记时法表示,就用钟面上的时刻加上12时。中午12时以后的时刻,用普通记时法表示,就用时刻减去12时。

  练习

  (1)图书馆的的公告牌上面写着:借书时间:12:0013:30,15:4017:00。图书馆每天的借书时间是多长?

  (2)用二十四小时计时法表示,:下午2:00,晚上9:00第六单元长方形和正方形

  1.认识长方形和正方形。掌握长方形、正方形的边与角有什么特点。(长方形对边相等,四个角都是直角。正方形每条边都相等,四个角都是直角。通常把长方形的长边叫做长,短边叫做宽。把正方形的每一条边都叫做边长。)

  2.探索、理解周长的含义及计算方法。计算长方形和正方形的周长。(物体某个面上一周边线的长度就是该物体某个面的周长)。

  练习

  (1)篮球场长26米,宽14米,求篮球场的周长。

  (2)操场长150米,宽70米,小强绕操场跑一周,小强一共跑了多少米?

  第七单元乘法

  1.三位数乘一位数的基本方法。(在二年级下册已经学习了两位数乘一位数)

  2.三位数的中间或末尾是0时的`乘法计算。3.连乘计算。练习:

  (1)200×3152×4261×3224×5(2)124×3×2115×2×4

  (3)一头牛一天吃20千克草,两头牛两天吃多少千克草?

  第八单元观察物体

  安排过一次“观察物体”,从物体(玩具、茶壶、汽车等)的前面、后面、左面、右面观察,并选择适宜的图形表示看到的物体的形状。本单元学习“观察物体”,从物体的正面、侧面和上面观察,并用视图表示看到的形状。

  1.在知道物体的前面、后面、左面、右面的基础上,认识物体的正面、侧面和上面。

  2.在不同的位置观察,看到的物体的面的个数往往是不相同的。

  3.进行简单几何体与其三视图之间的转化。

  第九单元统计与可能性

  学习简单的统计知识。

  练习

  (1)在一个口袋里放3个红球,一个黄球,从袋子里任意摸一个球,摸到红球的可能性大还是摸到黄球的可能性大?

  第十单元认识分数

  理解分数的意义,认、读、写简单的分数,同分母分数(分母小于10)的加减计算。

  1.分数的表示:分子、分母、分数线。

  2.同分母分数比较大小。

  3.同分母分数的加减。

小学数学知识点总结14

  准备课

  1、数一数

  数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。

  2、比多少

  同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。

  比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。

  比较两种物体的多或少时,可以用一一对应的方法。

  位置

  1、认识上、下

  体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。

  2、认识前、后

  体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。

  同一物体,相对于不同的参照物,前后位置关系也会发生变化。

  从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。

  3、认识左、右

  以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。

  要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。

  学好数学的方法和技巧总结

  主动预习

  预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

  因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的.。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

  让数学课学与练结合

  在数学课上,光听是没用的。自己也要在草稿纸上练。当遇到不懂的难题时,一定要提出来,不能不懂装懂,否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。

  单项式书写格式

  1、数字写在字母的前面,应省略乘。[5a]、[16xy]等。

  2、π是常数,因此也可以作为系数。它不是未知数。

  3、若系数是带分数,要化成假分数。

  4、当一个单项式的系数是1或—1时,“1”通常省略不写,如[(—1)ab]写成[—ab]等。

  5、在单项式中字母不可以做分母,分子可以。

  6、单独的数“0”的系数是零,次数也是零。

  7、常数的系数是它本身,次数为零。

  8、如果是分数的多项式,那么他的系数就是他的分数常数,次数为最高次幂。

小学数学知识点总结15

  一、学习目标:

  1.知道生活中有比万大的数;认识计数单位“万、十万、百万、千万和亿”,类推每相邻两个计数单位之间的关系,知道数级、数位;

  2使学生认识射线,直线,能识别射线、直线和线段三个概念之间的联系和区别;认识角和角的表示方法,知道角的各部分名称;

  3,在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;

  4.结合生活情境,通过自主探究活动,初步认识平行线、垂线;独立思考能力与合作精神得到和谐发展;

  5.在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

  二、学习难点:

  1.认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

  2.角的意义;射线、直线和线段三者之间的关系;

  3.掌握整数乘法的口算方法;培养学生养成认真思考的良好学习习惯;

  4.初步认识平行线与垂线;理解永不相交的含义;

  5.掌握用整十数除商是一位数的口算方法;培养学生养成认真计算的良好学习习惯。

  三、知识点概括总结:

  1.亿以内的数的认识:

  十万:10个一万;

  一百万:10个十万;

  一千万:10个一百万;

  一亿:10个一千万。

  2.数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的`原则,把数读,写出来。

  通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。

  3.数级分类:

  (1)四位分级法:即以四位数为一个数级的分级方法。

  我国读数的习惯,就是按这种方法读的。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。这些级分别叫做个级,万级,亿级……。

  (2)三位分级法:即以三位数为一个数级的分级方法。

  这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。

  4.数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。

  从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。

  这就说明计数单位和数位的概念是不同的。

  5.数的产生:

  阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。

  阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。

Copyright©2003-2024xianxue.com版权所有