- 相关推荐
高二上学期数学知识点归纳非常实用
上学的时候,大家都没少背知识点吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。还在苦恼没有知识点总结吗?以下是小编帮大家整理的高二上学期数学知识点归纳非常实用,仅供参考,希望能够帮助到大家。
高二上学期数学知识点归纳非常实用1
1、圆的标准方程:
圆心为A(a,b),半径为r的圆的方程
2、点与圆的关系的判断方法:(1),点在圆外(2),点在圆上(3),点在圆内
4.1.2圆的一般方程
1、圆的一般方程:
2、圆的一般方程的特点:
(1)①x2和y2的系数相同,不等于0.
②没有xy这样的二次项.
(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了.
(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1圆与圆的位置关系
1、用点到直线的距离来判断直线与圆的位置关系.
4.2.2圆与圆的位置关系
4.2.3直线与圆的方程的应用
1、利用平面直角坐标系解决直线与圆的位置关系;
2、过程与方法
用坐标法解决几何问题的'步骤:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成几何结论.
4.3.1空间直角坐标系
1、点M对应着确定的有序实数组,对应着空间直角坐标系中的一点3、空间中任意点M的坐标都可以用有序实数组来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M。
拓展阅读:高中数学学习方法
1.从数学基础入手,细化到每个知识点的复习
高三文科数学复习的起点要“低”,最好从最最基本的知识点入手。一方面,以课本例题为起点;另一方面,以课本练习题为起点,这最主要是因为高考文科数学内容都是以课本为“源”的。只有将课本中的“源”充分弄懂、弄明白,才有可能在高考题海中做到举一反三,立于不败之地。另外也可以从中(低)档题的练习为起点,如:数学选择、填空和较简单的解答题等,确保难度低、基础知识点的题目不丢分。
2.积极参与课堂复习,课后要勤快反思
高三备考时间紧张,需要掌握的内容较多,因此课堂复习的容量也相当大,节奏也较快。为了达到高效复习效果,学生应紧跟教师节奏,积极参与,争取达到“查漏补缺”的效果,在考试中真正发挥效益。当然,除了课堂复习以外,学生的课后复习时间也较多,许多学生认为数学复习就是多做题,提高解题效率。
3.掌握解题速度与技巧
通过对《考试说明》和《考纲》信息的了解,并明确了解高考文科数学到底“考什么”、“考多难”、“怎样考”,并有针对性的探寻更多的解题技巧。同时在平常的考试中,都要严格要求,将其作为高考的“预演”,在有限的时间内,加快解题速度,并从反复的考试实践中,总结出不同题型的解答应对策略。
高二上学期数学知识点归纳非常实用2
1、四种命题:
⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若p则q;⑷逆否命题:若q则p
注:
1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。
2、注意命题的否定与否命题的区别:命题否定形式是;否命题是.命题“或”的`否定是“且”;“且”的否定是“或”.
3、逻辑联结词:
⑴且(and):命题形式p q; p q p q p q p
⑵或(or):命题形式p q;真真真真假
⑶非(not):命题形式p .真假假真假
“或命题”的真假特点是“一真即真,要假全假”;
“且命题”的真假特点是“一假即假,要真全真”;
“非命题”的真假特点是“一真一假”
4、充要条件
由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。
5、全称命题与特称命题:
短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。
短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号表示,含有存在量词的命题,叫做存在性命题。
高二上学期数学知识点归纳非常实用3
一定义
集合是高中数学中最原始的不定义的概念,只给出描述性的说明。某些确定的且不同的对象集在一起就成为集合。组成集合的对象叫做元素。
二集合的抽象表示形式
用大写字母A,B,C表示集合;用小写字母a,b,c表示元素。
三元素与集合的关系
有属于,不属于关系两种。元素a属于集合A,记作aA;元素a不属于集合A,记作aA。
四几种集合的命名
有限集:含有有限个元素的集合;无限集:含有无限个元素的集合;空集:不包含任何元素的集合叫做空集,用表示;自然数集:N;正整数集:N_或N+;整数集:Z;有理数集:Q;实数集:R。
五集合的表示方法
(一)列举法:把元素一一列举在大括号内的表示方法,例如:{a,b,c}。注意:凡是以列举法形式出现的集合,往往考察元素的互异性。
(二)描述法:有以下两种描述方式
1.代号描述:【例】方程2x3x+2=0的所有解组成的集合,可表示为{x|x2-3x+2=0}。x是集合中元素的代号,竖线也可以写成冒号或者分号,竖线后面的式子的作用是描述集合中的元素符合的条件。
2.文字描述:将说明元素性质的一句话写在大括号内。【例】{大于2小于5的.整数};描述法表示的集合一旦出现,首先需要分析元素的意义,也就说要判断元素到底是什么。
(三)韦恩图法:用图形表示集合定义了两个集合之间的所有关系。子集有两种极限情况:
(1)当A成为空集时,A仍为B的子集;
(2)当A和B相等时,A仍为B的子集。真子集:如果所有属于A的元素都属于B,而且B中至少有一个元素不属于A,那么A叫做B的真子集,记作AB?或。真子集也是子集,和子集的区别之处在于。
对于同一个集合,其真子集的个数比子集少一个。
(1)求子集或真子集的个数,由n各元素组成的集合,有2n个子集,有2n-1个真子集;
(2)空集的考查:凡是提到一个集合是另一个集合的子集,作为子集的集合首先可以是空集,的等价形式主要有。