高中数学总结14篇
总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,让我们来为自己写一份总结吧。我们该怎么去写总结呢?下面是小编精心整理的高中数学总结,欢迎阅读与收藏。
高中数学总结 篇1
20xx年10月24—11月1日,我有幸在省教育厅国培办的推荐和我们学校大力支持下和来自福建的另外三名教师一起参加了由xx师范大学承办的“国培计划”高中数学一线优秀教师示范培训,本次培训有来自12个省份的50位一线教师。本次培训紧紧围绕“一线优秀教师技能培训”这一基本任务,以“数学教师课堂教学能力提升”为主线,以“参与式”为主要培训方式,提升数学教师的“课堂教学设计能力,课堂教学创新能力,课堂教学实践能力”,短暂紧凑的10天培训,领略了高校专家的朴实、严谨、丰厚的数学底蕴、欣赏了国内特级名优教师的灵动丰满的数学报告、折服于同班同学踏实上进的学习特质、陶醉于和谐融洽的同学关系。短短的培训,深深的缘分,远远的发展在路上,甚有一种踏花归来马蹄香的意味!现将培训学习情况汇报如下:
一、专家讲座精彩朴实
本次培训以学科专业技能提升为主旨,听取了11位国培专家的专题讲座,既有中学数学泰斗级的《数学教育学报》副主编、天津师范大学王光明教授,有来人民教育出版社中学数学室主任、课程教材研究所研究员、《普通高中课程标准实验教科书数学》副主编章建跃教授,数学教学科研专家张生春教授,也有中学教研型专家知名特级教师连春兴、刘贵老师,有教学一线的衡水中学数学教科室主任褚艳春主任,还有学校教育管理方面的引领者石家庄一中校长、全国知名的课改专家娄延国博士、衡水中学分管德育的郗会所副校长、邯郸一中高三年级主任秦喆特级教师。
章建跃教授作了题为《数学学习与智慧发展》的专题报告,既有高屋建瓴的顶层设计和理论指导,又有对具体典型案例的剖析和设计,让全体学员经历了一次头脑风暴的冲击,深深感受到了高中数学课程改革的必要性以及对高中教师专业能力提高的迫切性;张生春教授从传统的听评课与基于证据的听评课的案例、基于证据的听评课、如何开发工具三个方面具体阐述,并结合我们高中教学实际给出了具体真正意义上的其于证据的听评课做法;刘贵老师对数学高考、数学竞赛的独到见解、精辟领悟让人折服,也让我们感受了他对数学编题、解题的巧妙与灵动;秦喆老师作为一个年级部主任从如何关爱学生开设了题为《成就学生,做最优秀的自己》专题讲座,他认为好父母都是学出来的,好孩子都是教出来的,好习惯都是养出来的,好成绩都是帮出来的,好沟通都是听出来的,好成绩是夸出来的,让我启发很大。当然,本次培训汇聚着各地优秀的学员,其出彩的课堂教学,丰满的数学讲座,娴熟的教学技术让学员们深受启发。
二、研讨交流充分有效
为了让全国各地学员有充分的.交流和借鉴,本次培训还开展了以高中数学有效教学策略研讨和校本研修的组织与实施为主题的两次主题研讨,并分别到石家庄一中和衡水中学进行了两节课同课异构教学交流。两次主题研讨中各小组讨论充分,能围绕主题主动交流自己学校的做法,提出各自的见解,在“校本研修的组织与实施”主题研讨中,华师大附中周珂老师作为国内一流学校代表做了《兼收并蓄百花齐放》的主题发言,为了衬托他们的高、大、上,我作为山区县级学校代表做了《名师引领联动研修》的主题发言,主要介绍了我们学校成立名师工作室的做法和主要职责及职能,也引起了有类似情况学校教师的共鸣。另外为横向比较应试教育和素质教育的不同课堂表现,我们选派了素质教育贯彻得比较好的上海青浦中学一位女教师与我们认为应试教育重灾区衡水中学进行同课异构,发挥了全班同学的智慧打造了一节公开课和衡水中学的刘志云老师PK,总体而言,我们并没有感受到这两种课堂的明显差异,没有看到到我们原来想象中应试教育的课堂场景,整个课堂气氛活跃,学生回答问题和思考都积极主动,不做作,不作秀,课堂朴实但高效。
三、实地考察收获满满
为近距离感受名校的教改与校本研修的实施,国培办特别安排了我们在石家庄一中和衡水中学进行了为期两天的学习考察,其中石家庄一中呆了半天,衡水中学足足呆了一天半。两天的实地考察,让我们近距离感受到了xx省两所名校的校园文化和学校的精细管理,特别值得一提的是在衡水中学所见所闻给我的震撼:
1、视觉震撼
清北街。还不到校门,就看到道路两旁墙壁上的宣传榜,一张张学生的照片,全是20xx年的清华北大录取的学生,几乎占了老校区旁边的整条街,被当地人称为清北街。今年有119名学生被清华北大录取,17名考入香港大学等港校,72名学生被英国帝国理工学院,加拿大多伦多大学等国外名校录取。这种街道也许只有衡水才有,这种成绩着实让人震撼。
不可思议的跑操。衡水中学的早操和课间操真的是用语言无法言表。早晨5点30分学生起床后,只见宿舍楼里面开始蜂拥走出学生,出楼之后学生马上开始跑步前进。我看到他们的手里都还拿着一些东西,走近了一看,原来学生拿着卷子、书本以及各种手抄的资料。只见他们走到跑道上站好了就开始背书,一会儿跑道上的人越来越多,无一例外,都是到了操场就开始背书——原来他们是利用跑操前的一点时间在背书,真的是点滴时间都不浪费。队伍站好了,一声哨令,开始跑操,所有人紧贴着,间距很小,后面的人跑得脚正好插在前面同学的抬起的脚跟下面,步调完全一致,没有任何人跑错脚步。实际上只要一个人跑错了,这一排人都会倒下,但是跑得并不慢。班级之间的间距不变,绝对没有停下的现象。学生的口号震耳欲聋,而且都是励志的口号,并不是简单的1234,努力奋斗、拼搏进取、永争第一、舍我其谁等等的口号比比皆是。
自习、午休静悄悄。衡水中学老校区的校舍呈回字形,晚自习上课铃响10秒钟不到,整幢大楼没有任何的吵闹声,我们当时在场的50多位参观老师都觉得不可思议,但却真实展现在我们面前。自习课更是听不到、也看不到有学生在讨论、闲聊、打闹现象,所有学生都专心的做自己的事情。中午12点45分午休时间一到,整个宿舍区也如无人一般。
校园行人急。在校园里走的学生老师大都快步如飞,没人慢腾腾的走路,不像我们的学生天天在校园里像逛街一样。而且学生的手里要么拿着各种学习资料,要么空着手,可是我们的学生手里拿着的是饮料瓶、雪糕、点心……
2、制度震撼
衡中的管理制度非常严厉:学生全部寄宿学校,所有学生回家只准带牛奶、香蕉、苹果、桔子和饼干类点心,其他的不准带,否则回家一个周接受家长再教育;不准在食堂和宿舍以外的任何地方吃东西,否则回家一个周;不准带手机入校,否则回家一个月;男女同学非正常接触,回家一个月;学生打架,立即开除;学生谈恋爱,立即开除;学生不能跑操要有县级以上医院的证明经过班主任、年级主任、学校教育处干事、教育处主任等人的审核,最后由分管教育处的副校长批准,即便如此也还得到操场读书。若学生要返校,必须学生真正反思好,填写好反思表后,由家长领着学生过四关:一是到班主任处由班主任签字认可反思情况,二是到级部主任处签字,三是到分管校长处签字,四是到教育处盖章。
如此严格繁琐的管理程序,肯定让违纪学生望而生畏,也许正是因为这样的管理制度,学生几乎没有违纪的,更不要说各种严重违纪的发生了,在衡中谁要是被处罚接受家长再教育那是很没有面子而且损失很大(七天以上不能听课)的事情,而且在衡中由于任何一个决定不是哪一个人说了算,所以没有情分面子会起到什么作用。据他们的副校长介绍,衡水市的市委书记在公开场合表态,如果介绍一两个学生进衡中没有问题,但如果在衡中因违纪要去说情,门儿都没有。在晚自习参观回来的路上还有一个小插曲,我们离开校园时,但门卫就是不让我们走,说是没有学校安保处的许可,虽然有一个衡中本校的带队老师与门卫交涉也不行。二十几分钟以后,有了安保出的通知,我们才得以离开。管中窥豹,可见一斑。
3、细节震撼
学生常规管理精细。据了解学校实行全封闭管理,所有学生(三个年段,每个年段60个班,每个班级80到100人不等)全部住校,上课时宿舍区和教学区隔绝(上锁)。学校制度、活动非常之多,且都有严格的规范要求。常规检查非常细致。仅从张贴的各种检查表就可看出:有“讲科学、行规范、上水平”教育实践活动公开栏,内容包括:风采展示台、不良行为曝光台;有男生楼、女生楼检查量化表,检查项目包括卫生、安全、物品排放等40余项,每天检查,每天公布;有学生会联查表、跑操检查公布表、自习和作业检查情况公布表;有《班执勤所查不文明行为汇总单》,记载的内容:跑步就餐、男女共餐、就餐插队、走廊长明灯等。
调研考试安排精细。据了解本学期高三安排了四次调研考试,一次期中考试,高一高二也至少三次调研考试。考试的组织非常严密细致。仅从宣传栏、走廊张贴物等就可略见一斑。调研考试前,对命题范围、题型与分值、考察内容都有明确的命题规定。学校专门制订了《衡水中学试题评价方案》,对试题比例、试题区分度、试题科学性、严密性及试题打印质量等都进行严格的评价。调研考试期间,有一张高三第二次调研考试活动安排表,何时上课、何时就餐、何时自习,精确到某一分钟;还发现有一张调研考试期间临时课程表,安排到每节课、每节自习。每次调研考试结束后工作做得更细,至少做好以下几点:
一是评出优秀师徒(实际相当于师生成长共同体,教师评选先进时,学生都帮着给拉票);
二是评出红旗备课组、学科第一(教学业务系列分析评价);
三是评出双优班集体、优秀班主任(管理系列分析评价);
四是评出清华北大希望之星,评出理科状元、文科状元希望之星(尖子生情况分析);
五是对新老校区各段人数进行对比;六是对各学科系列排名变化进行对比;七是对各班成绩变化情况进行对比(以上内容全部在显眼位置张榜公布)。
教学细致。教师讲课非常细致,就是实验班的学生,进行一轮复习也是讲的极其细致,完全不因学生的基础较好而糊弄了事,真的做到了每一个知识点都不漏;教师给学生布置作业,更是分的很细,必做、选作、自助餐,怎么收、怎么批、怎么改、怎么讲都规定的详细的很;课程表安排的细,比如英语课,规定了哪一节是上新授课、听力课、自习课、讲评课,其他学科也是按照学科特点进行了相应的设置……
4、德育震撼
培养学生坚强的意志。衡水中学从1984年至今,每年对高一学生进行军训,而且每次时间都长达xx天。除此之外,学校还要对高一新生进行一次80华里的远足活动,他们把这项活动称为“砥砺意志的长征”。80华里,对于很多孩子来说是一个极大的挑战,但没有人会退缩,也不允许请假。不难想象,有了这样的经历,这样的感悟的学生,对待困难、对待学习、对待未来会是怎样一种态度。
说实话在去衡水中学之前,培训班的大多教师(包括我自已)对衡水中学都是带着抵触和偏见情绪,但学习考察完后,对衡水中学的管理和教学都重新定位,它一定是有过人之处,才能引领全国的高考,造成这么大的轰动!
总之,本次学习培训,不仅拓宽了我的视野,还丰富了我的实践经验,更让我的思想得到了升华,使我对数学教学有了更新的认识。“刀不磨要生锈,人不学要落后”,在今后的教学工作中,我会继续努力学习,钻研教学业务,我也相信在倾听、反思、实践中,我的教学之路会愈趋成熟,相信会做得更好。
高中数学总结 篇2
抛物线:y = ax *+ bx + c
就是y等于ax 的平方加上 bx再加上 c
a 0时开口向上
a 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
还有顶点式y = a(x+h)* + k
就是y等于a乘以(x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
关于圆的公式
体积=4/3(pi)(r^3)
面积=(pi)(r^2)
周长=2(pi)r
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0
(一)椭圆周长计算公式
椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式
椭圆面积公式: S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。
椭圆形物体 体积计算公式椭圆 的 长半径*短半径*PAI*高
表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式
公式运用
可用于某些分母含有根号的分式:
1/(3-4倍根号2)化简:
1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23
[解方程]
x^2-y^2=1991
[思路分析]
利用平方差公式求解
[解题过程]
x^2-y^2=1991
(x+y)(x-y)=1991
因为1991可以分成1×1991,11×181
所以如果x+y=1991,x-y=1,解得x=996,y=995
如果x+y=181,x-y=11,x=96,y=85同时也可以是负数
所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995
或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85
有时应注意加减的过程。
常见错误
平方差公式中常见错误有:
①学生难于跳出原有的`定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)
②混淆公式;
③运算结果中符号错误;
④变式应用难以掌握。
三角平方差公式
三角函数公式中,有一组公式被称为三角平方差公式:
(sinA)^2-(sinB)^2=(cosB)^2-(cosA)^2=sin(A+B)sin(A-B)
(cosA)^2-(sinB)^2=(cosB)^2-(sinA)^2=cos(A+B)sin(A-B)
这组公式是化积公式的一种,由于酷似平方差公式而得名,主要用于解三角形。
注意事项
1、公式的左边是个两项式的积,有一项是完全相同的。
2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
3、公式中的a.b 可以是具体的数,也可以是单项式或多项式。
高中数学总结 篇3
本学期以来,本人热爱本职工作,认真钻研业务知识,刻苦学习新的教育教学理论,努力延伸相关专业深度,不断提高自己的教学水平和思想觉悟,基本形成了比较完整的知识结构。在教学中严格要求学生,尊重学生,以学生为中心,以教师为主导,发扬教学民主,实施因材施教。使学生学有所得,不断提高,为了下一学年的教育工作做的更好,本人特将本学期教学心得总结如下:
一、政治思想方面:
我认真学习和研究中国特色社会主义理论体系,树立高尚的世界观,人生观,用高尚的精神塑造自己,用社会主义核心价值体系要求自己,坚决抵制各种错误和腐朽思想影响自己,以为人民服务为宗旨,以集体主义为原则,不断加强自身思想道德修养,与时俱进,使自己跟上时代前进的步伐。
我坚决拥护党的路线、方针和政策,遵守国家法律、法令;关心时事政治,关心学校的改革与发展,认真执行学校的决议和各项规章制度,尊敬领导、团结同事、乐于助人、勇于奉献、虚心向他人学习,具有良好的道德品质和思想修养。
二、教育教学工作方面:
“学高为师,德高为范”。所以工作以来,我不断加强学习,丝毫不敢松懈。我一方面参加新课程培训,掌握新课程理念;另一方面,我便潜心研究教学方法,学习教学技术,将所学的教学理论与教学实践相结合;精心备课,上课,做好课后反思,在不断反思中积累宝贵的经验。我还积极去听各位老教师的课堂,吸取前辈的经验,完善自己的不足。
要提高教学质量,关键是上好课。为了上好课,我做了下面的工作:
1、课前准备:备好课。
2、认真钻研教材,对教材的基本思想、基本概念,每句话、每个字都弄清楚,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应补充哪些资料,怎样才能教好。
3、了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。
4、考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。
5、课堂上的情况。
组织好课堂教学,关注全体学生,注意信息反馈,调动学生的有意注意,使其保持相对稳定性,同时,激发学生的情感,使他们产生愉悦的心境,创造良好的课堂气氛,课堂语言简洁明了,克服了以前重复的毛病,课堂提问面向全体学生,注意引发学生学数学的兴趣,课堂上讲练结合,布置好家庭作业,作业少而精,减轻学生的负担。
6、要提高教学质量,还要做好课后辅导工作,有点的学生不能按时完成作业,有的学生抄袭作业。针对这种问题,就要抓好学生的思想教育,并使这一工作惯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上,对后进生努力做到从友善开始,比如,握握他的手,摸摸他的.头。从赞美着手,所有的人都渴望得到别人的理解和尊重,所以,和差生交谈时,对他的处境、想法表示深刻的理解和尊重,还有在批评学生之前,先谈谈自己工作的不足。
7、积极参与听课、评课,虚心向同行学习教学方法,博采众长,提高教学水平。
8、热爱学生,平等的对待每一个学生,让他们都感受到老师的关心,良好的师生关系促进了学生的学习。
我热爱自己的事业,从不因为个人的私事耽误工作的时间。并积极运用有效的工作时间做好自己分内的工作。
高中数学总结 篇4
本学年数学教研组根据学校的工作要求与目标,在教务处的直接领导下,在年级部及各部门的支持下,全组教师坚持教育、教学理论的学习,积极参加教研活动,完善和改进教学方法和手段,认真贯彻落实课改精神,以人为本,以促进学生发展、教师成长为目的。以教法探索为重点,努力提高课堂效益和教学质量;以组风建设为主线积极探索教研组建设和教师专业发展的有效途径。不断总结经验,发挥优势,改进不足,集全组教师的创造力,努力使数学教研组在有朝气、有创新精神、团结奋进的基础上焕发出新的生机与活力。现将主要工作总结如下:
一、组风建设
1、认真组织老师学习学校的各项规章制度,统一认识,明确要求和做法,并在教学工作中认真执行和做好检查督促。组内老师都能准时上下班,工作中不做与教学无关的事。
2、做好组内的团结工作。现在组内能团结一心,互帮互助,关系融洽,不计较个人得失。平时组内青年教师能虚心向老教师学习,并能积极做好组内的日常工作,如卫生打扫、扛水等;老教师能毫无保留地帮助青年教师,关心青年教师。
3、组内逐步形成了互相学习、互相研讨的良好风气。平时在教学中有什么问题,大家都能及时交流、互相探讨,有关于教材教法的,题目解法的,分析学情的等等。做到教研活动经常化,从而互相促进、共同进步。
二、教学常规
课堂教学是实施数学教学的主渠道,是培养学生学习能力的主要途径。数学教研组一贯重视课堂教学常规管理,并积极配合教务处强化教学常规的督查评估,坚持抓备课常规,教学常规的落实,定期不定期检查教案、作业、听课笔记、业务笔记等。使备课、上课、质量检测、作业批改、辅导学生、组织课外活动的各个环节都符合规范化的教学要求。进一步完善集体备课的环节,让集体备课由“形式化”转为“实效化”,努力促进个人备课质量得到提高,真正提高了课堂教学质量。备课组长负责实行集体研讨的'备课方式,在集体研讨的基础上结合每位教师自身的教学特色编写教案,备课组长及时了解教师课前、课中、课后研究教材、把握课堂实效的情况,及时总结和推广组内教师的成功经验,切实做到把关备课过程中的各环节,充分发挥备课组的集体智慧,备课组长把好本组的教学质量关,命题质量关,使每位教师都明确树立集体质量的意识。在常规教学中认真备课已成为所有数学备课组的习惯,在高一、高二备课组,注重利用教材,包括章导言和章小结的内容的研究,发挥课本中习题的作用,注重课堂教学,狠抓落实,讲求实效,不搞花架子,在提高课堂教学的有效性上积极研讨,商定策略。高三的集体备课更是稳扎稳打,充分了解学生的情况,及时针对学生学习中存在的问题进行商讨,并加以解决。课外辅导分层次,他们指导优生以深化知识内容、发挥特长为主;对中差生有辅导计划,分析原因中肯,措施得力,辅导形式多样化,大多数的问题集体辅导,个别问题个别指导。
三、教科研工作
每周一次的教研组活动,围绕理论学习、听课评课活动,合作交流等形式进行,为大家提供一个学习交流的平台,使组内形成良好的教研学习风气,有效提高了教学质量。
1、理论学习深化教学认真学习课程标准,研究教材,加强组内老师之间的学习与交流,注意教学资料的积累。坚持以学生为主体,以新的理念指导课堂教学,提倡教师把日常的每一节课都当作公开课来上,努力提高课堂教学质量,及时对所上的课进行教后分析和反思。在课堂与教学方面,重点是关注教师的教学方式和学生的学习方式, 改变学生单一的接受性学习方式,提倡研究性学习、发现性学习、参与性学习、尝试性学习和实践性学习,实现学生学习方式的多样化,把要我学变为我要学,把学会变为会学。牢固树立学生是学习的主人,教师是学生学习的组织者、引导者、合作者和促进者的思想观念。
2、听课评课活动提高课堂效率。为了改革课堂结构和教学方法,提高教师的课堂教学水平,提高课堂教学效益。我们坚持开展听、评活动。且把这个活动作为一个重要的教研活动。我组教师十分重视听评课活动,听课前开课教师认真备课,设计教案。听课后进行认真评课。如教学内容安排是否恰当,难点是否突破,教法是否得当,教学手段的使用,教学思想、方法的渗透,是否符合素质教育的要求,老师的教学基本功等方面进行中肯,全面的评论、探讨。在此基础上进一步探讨如何才能使这一节课更高效,并提出一些具体的操作方法。通过听课评课活动教师的教学水平得到很大的提高
3、合作交流资源竟共享。以平等、宽容的态度对待同事,在沟通和“对话”中实现彼此的共同发展,构建无年级界限,无年龄界限的互动关系。将个人的成果、体会、困扰、感悟及时分享。将年级间存在的问题与解决的措施及时分享,少走弯路,多走捷径。积极参与市教育局、区教育局、学校组织的各种教研活动,多接触、了解外界动态,积极学习他人先进经验,走出去学回来,不闭关自守,不盲目自大。
高中数学总结 篇5
数学教研组韩婷老师代表自治区参加全国第六届高中数学优质课比赛获得一等奖的好成绩,韩婷老师优异的表现,充分展现了六盘山高中青年教师的活力和风采,体现了她扎实的教学功底和良好的数学素养,受到评委及来自全国各地听课教师的一致好评。该成绩的取得,除了韩婷老师自身的努力外,更是全数学教研组团结协作,精心打造的结果,是全体数学教师集体智慧的结晶。从参加自治区优质课选拔开始并获自治区一等奖,到参加全国比赛,前后一年时间,全组教师,特别是高二备课组教师,积极参与到听课、评课中献计献策,反复修改、打磨、完善,不仅使韩婷老师的课更加精湛,同时也提升了整个教研组的课堂教学能力。希望全组教师以此为契机,鼓舞士气,振奋精神,扎实工作,勤于钻研,不断提升自己的教育教学水平,为我校的繁荣发展发挥自己的聪明才智!
本次活动受到全国高中数学教师、数学教研部门、各会员单位的高度重视,来自全国除西藏、港澳台以外的所有省、直辖市、自治区,行业的近93名代表参加了本次活动,覆盖范围广,参与热情高。各会员单位做了大量前期工作,很多会员单位从两年前就开始布置、落实本项活动,把工作细化在过程中,积极组织当地广大高中青年数学教师参与观摩活动,引领广大教师交流教学经验,以观摩与评比活动带动课堂教学研究,在研究中不断深化课堂教学改革,切实提高课堂教学质量和效益。
本次大会的协办方卡西欧(上海贸易有限公司)、《中国数学教育》《数学周报》社为本项活动提供了资金、技术、奖品以及人力、物力的大力支持.
各位参赛选手付出了巨大的智力劳动,承受了巨大的心理压力,为本次活动做出了特殊的贡献。在教师专业化成长的道路上迈出了重要而坚实的一步。
由于本次活动组织方式的改变,对评委提出了高要求。各位评委不仅要事先对参赛选手的教学设计、教学设计说明和课堂实录进行仔细阅读、观摩,在现场还要聚精会神地观察选手的表现,根据参赛选手的预设和现场生成,做出评判,并给出点评。这项活动汇集了我国高中数学教学最前沿的教改、教研信息,展示了我国目前高中课程改革中取得的最新成果,反映了全国高中数学教育教研的前沿动态。
一、本次活动的基本成绩
1.关于活动满意度的调查。以问卷的方式,对本次活动的现场满意度作了调查:
参会代表最感兴趣的环节:选手讲述4.9%,代表互动16.5%,评委点评78.6%。这一组数据表明,广大观摩代表对评委会的期望值很高。
2.本次活动涉及的教材版本有人教A版、人教B版、北师大版、苏教版、上海版、人教大纲版。版本的多样化从一个侧面反映了本次活动的代表性和广泛参与性。
3.内容覆盖了高中课程的所有板块,有大量的概念课,这是非常好的现象。概念教学是我国数学课堂的薄弱环节,加强研究很有必要。另外,有些选手选择了一些难点课题开展教学研究,例如概率、统计中的一些概念课,这是当前需要重点研讨的,体现了选手能迎难而上。
4.各位参赛选手在理解教学内容上下了很大功夫,与往届比较,在数学理解水平上有了很大长进。
5.学生主体意识进一步加强,注重精心设计学生活动,采取问题引导学习的方式,让学生带着问题开展探索活动。
6.教学过程中,能自觉注意根据学生的认知规律安排教学活动。特别值得一提的是,许多参赛教师都能注意根据概念教学的基本规律安排教学进程,注意通过具体事例的归纳、概括活动得出数学概念。
7.信息技术与数学教学整合的水平进一步提高,大部分教师都能做到恰当使用信息技术,帮助学生理解数学内容。
8.现场互动充分,评委事先观看了各位选手提供的完整的课堂录像,预先写好了点评提纲,并结合每一位选手的现场表现给予认真点评。代表的参与程度高,现场气氛热烈。摆事实、讲道理、亮观点的互动原则得到贯彻。
二、几个需要进一步思考的问题
1.正确理解“三维目标”
在参赛选手提供的教学设计中,教学目标的表述不尽一致。许多老师采用了“三维目标”分别阐述的方式呈现目标。
从积极的方面看,老师们已经注意到教学目标必须反映内容特点,关注到显性目标与隐性目标的不同。但这样的表述,除了目标分类不准确、表达不确切(如把“由一般到特殊、由特殊到一般”的逻辑思考方法不恰当地归入情感领域,把“培养学生积极严谨的学习态度和勇于探索的求知精神”这样的“放之四海而皆准”的目标作为一堂课的目标。)等“技术性”问题外,最大的问题是混淆了课程目标与课堂教学目标的关系。
“三维目标”是课程目标而不是课堂教学目标。“三个维度”具有内在统一性,都指向人的发展,它们交融互进。“知识与技能”只有在学生独立思考、大胆批判和实践运用中,才能实现知识的意义建构;“情感、态度与价值观”只有伴随着学生对数学知识技能的反思、批判与运用,才能得到升华;“过程与方法”只有学生以积极的情感、态度为动力,以知识和技能目标为适用对象,才能体现它的存在价值。
“三维目标”是中学课程目标的整体设计思路,反映了一个学习过程中的三个心理维度,但不是教学目标的维度。在制定教学目标时简单地套用“三个维度”将使课堂不堪重负。
教学目标取决于教学内容的特点,要在“三个维度”的指导下,综合考虑高中阶段的数学教学目的、内容特点和学生情况来确定。课堂教学不是为了体现课程目标的“三个维度”而存在的,而是要具体而扎实地把数学课程内容传递给学生,要以数学知识教学为载体来促进学生的发展,这样才能真正实现“数学育人”。
因此,一堂数学课的教学目标,应当是以数学知识、技能为载体,在教学过程中开展数学思想、方法的教学,渗透情感、态度和价值观的教育。只有在正确理解教学内容的基础上,才能制定出恰当的教学目标。
2.围绕概念的核心展开教学
一段时间以来,大家对数学教学的有效性开展了大量研究。如果在网上以“有效教学”为关键词搜索,那么有效教学的论文数以万计,还有许多理论专著,有效教学研究可谓一片繁荣。然而,与之形成鲜明对照的是课堂教学的低效甚至无效。看来,“有效教学”的研究也有“无效”之虞。到底怎样才能实现课堂教学的有效性?我认为,只有围绕数学概念的核心展开教学,在概念的本质和数学思想方法的理解上给予点拨、讲解,让学生在理解概念及其反应的数学思想和方法的基础上,对细节问题、变化的问题进行深入思考,这样才能实现有效教学。因为概念的核心、思想方法是不容易把握的,这是教师发挥主导作用的重点所在;具体细节正好是锻炼学生应用概念解决问题的机会,是促进学生理解概念的平台。那种事无巨细、包打天下的做法,要把所有细节、变化都在课堂上讲完练完的企图,最终只能把关键、重点、核心淹没在细节的海洋中,不仅教学效果不佳,而且导致学生负担沉重。
3.把引导学生提出问题作为重要教学内容
虽然老师们已经意识到,课堂教学中必须注意教师主导取向的讲授式与学生自主取向的活动式的结合,而且注意使用“问题引导学习”的教学,但学生只有回答老师提问的机会而没有提出问题的机会的做法仍需要进一步改进。教师要给学生以提问的示范,目的是使学生“看过问题三百个,不会解题也会问”。要把引导学生提问,使学生在独立思考后提出有质量的数学问题作为学生活动的重要内容。那种“构建模型我来干,你要做的就是算”的做法,挤压了学生独立思考的空间,剥夺了学生实质性思考的机会。
如何实现“让学生提问”呢?我认为,如果注意“先行组织者”的使用,在研究方法上多加指导,给学生提供类比的对象和方法,就能使学生自己提问。
4.“概念+数学思想方法”PK“题型+技巧”
在我们的数学课堂中,解题教学历来是重点、核心。教师常常把注意力集中在“题型”及其技巧上,许多老师分不清技巧与思想方法的界限,错误地把技巧当成思想方法,而且往往把技巧直接告诉学生,再让学生通过模仿训练记住技巧,而对技巧的来龙去脉则语焉不详特别是对蕴含于数学知识中的数学思想方法教学,因其是一种潜移默化、润物无声的“慢工”,被有些老师判为“不实惠”而得不到应有的渗透、提炼和概括。结果是在稍有变化的情境中,因为没有数学思想方法的支撑,“特技”失灵,“动作”变形,灵活应用数学知识解决问题的能力成为“泡影”。在“能力立意”的高考中出现“讲过练过的不一定会,没讲没练的一定不会”的结局就不足为奇了。
实际上,技巧往往是“可以意会不可言传”的,是不可复制的,而且掌握技巧需要付出大量时间、精力的代价,这是得不偿失的。大众数学教育是普及性的,目的是培养公民的基本数学素养,就像平时锻炼身体不需要专业运动技巧一样,并不需要太多高超的解题技巧,教学时也很难用富有启发性的语言予以传授。因此,技巧,雕虫小技也,不足道也!概念及其蕴含的思想方法才是根本大法!我们要强调数学知识及其蕴含的思想方法教学的重要性,无知者无能,在对数学知识没有基本理解时就进行解题训练是盲目的,也是注定低效的。解题训练应针对概念的理解和应用,要让学生养成从基本概念出发思考问题、解决问题的习惯。另外,解题的灵活性来源于概念的实质性联系,技巧是不可靠的,因此要加强概念的联系性,从概念的联系中寻找解决问题的'新思路。
5.怎样进行“思维的教学”
众所周知,数学是思维的科学,数学是思维的体操。数学教学的核心任务之一是要培养学生的思维能力,使学生在掌握数学基础知识的过程中,学会感知、观察、归纳、类比、想象、抽象、概括、推理、证明和反思等逻辑思考的基本方法。从课堂教学现状看,许多老师还没有掌握“思维的教学”的基本方法,不能有效地抓住“思维的教学”的时机。
思维发展心理学的研究表明,概括是人们掌握概念的直接前提;概括是思维的速度、灵活迁移程度、广度和深度、创造程度等思维品质的基础;概括是科学研究的关键机制;学习和应用知识的过程也是概括的过程;数学概括能力是数学学科能力的基础,概括能力的训练是数学思维能力训练的基础;概括与归纳、类比等直接相关,是培养创造力的基础。因此,“思维的教学”的基本方法是以数学知识的发生发展过程为载体,为学生的概括活动搭建平台,千方百计地给学生提供概括的机会,锻炼学生的概括能力,使学生学会概括。特别要注意在概括的关键环节上放手让学生自主活动。
顺便提及,要搞好“思维的教学”,关键是教师自己先要理解好数学内容的本质,教师自己要成为善于思考者。
6.如何进行课堂小结
从本次活动中发现,课堂小结问题还有进一步研究的必要。许多老师在小结时的第一个问题是“通过今天的学习,你有哪些收获?”这样的问题过于宽泛,学生的回答往往是“使我知道了数学与现实生活是紧密联系的”,“数学是有趣的”,“数学奇妙无穷的”,“我学会了数形结合思想”……大话、空话、套话甚至是假话满天飞,这种没有以本课内容为载体的“收获”是虚无飘渺的。
小结的主要任务是归纳本课内容,提炼思想方法,总结学习经验。要提高小结环节的教学立意,应当围绕本课的内容及其反应的数学思想方法,以知识的发生发展过程为线索展开,通过小结使学生头脑中形成关于本课内容的一个清晰的知识结构(包括相关知识的联系)。特别是,要把认识数学对象的“基本套路”、解决问题的“基本思路”等纳入其中。另外,在总结“学到了什么”的同时,还要总结“哪些地方没有学好、没学会”。
7.充分认识教材在教学中的地位
当前,教师误解“用教材教”“创造性地使用教材”的课改理念,不下功夫深入研读教材,在没有准确理解教材编写意图的情况下就随意地删减、补充或更改教材内容,有的甚至轻率地脱离教材进行教学,以那些粗制滥造的教辅资料为依据进行教学。这样做的结果是使教学失去基本依据,数学课堂变得没有章法。这种做法,只考虑“应试”而不顾学生的可持续发展,不重视教材,不要求学生精心阅读课本,把大部分时间花费在做教辅资料的题目上,已经导致学生会解题但不会提问,会模仿解题技巧而不会读书、不会独立思考。因此,这种局面必须引起我们的高度警觉,并下大力气扭转。作为优秀教师,应当注意到:
第一,一定要正确理解“用教材教”“创造性地使用教材”的内涵。这是针对“照本宣科”而言的,绝对不是提倡“脱离教材”搞教学。
第二,教材的“基础性”与高考的“选拔性”确有一定的目标差异,但学好教材一定是高考取得好成绩的前提,教师的主要精力应放在帮助学生熟练掌握教材内容上。
第三,理解教材是当好数学教师的前提,而“理解教材”的第一要义是“理解数学”。了解数学概念的背景,把握概念的逻辑意义,理解内容所反映的思想方法,挖掘知识所蕴含的科学方法、理性思维过程和价值观资源,区分核心知识和非核心知识等都是教师的基本功。
第四,要仔细分析教材编写意图。教材的结构体系、内容顺序是反复考量的,语言是字斟句酌的,例题是反复打磨的,习题是精挑细选的。因此,在处理教材时,内容顺序的调整要十分小心(否则容易导致教学目标的偏离),例子可以根据学生基础和当地教学环境替换,但所换的例子要反映教科书的意图,要能承载书上例子的教学任务。
三、结束语:把教研作为一种生活方式
本项活动在我国中学数学教育界具有很大影响力,已成为研究课堂教学问题,探讨课堂教学规律,提高课堂教学质量和效益,促进教师专业化发展的重要平台。“重在参与,重在过程,重在交流,重在研究”的活动宗旨深入人心。我们欣喜地看到,本项活动模式上不断创新,质量不断提高。所有这些都得益于大家的共同智慧和创造,得益于各会员单位在准备过程中不断加强和完善过程性、研究性,将本项活动宗旨具体化。在这几天的展示与观摩活动期间,做到了锦上添花,把各地的研究成果充分展示出来,通过现场互动交流,进一步发挥了这些成果的引领、示范作用。
教师专业化发展是一个没有止境的过程,要求广大教师把教学研究作为自己的生活常态甚至是一种生活方式,这是为人师表需要的一种态度,也是教师应具备的一种职业精神。做教研要有“默而识之,学而不厌,诲人不倦”的态度和精神:教研不是为了表演、作秀,要静下心来,心无旁骛,要默默然领会在心,也就是要“默而识之”;教研还要有“学而不厌”的精神,因为它不能让你升官发财,更多的是“枯燥乏味”,甚至费九牛二虎之力而难入其门,很多老师也因此而放弃,但这正是进步的开端,因此做教研要有“面壁十年”的准备;当教师必须有“诲人不倦”的态度,当今的教育,受功利化社会环境的污染,已经忘记了自己“教书育人”的根本职责,家长、社会、行政部门以“教育GDP”(升学率)论英雄,这种社会氛围十分令人生厌。数学教学也不能置身事外,教师为了分数而不得不让学生进行大运动量机械重复训练,而数学的育人本分(培养思维能力、发展理性精神)则被抛到九霄云外,这种没有思想、没有灵魂的教育已经“造就”了大批只会解题不会读书的学生。在这样的环境下,一个真正的数学教师,必须怀有一种菩萨心肠,无私地热爱学生;还要有普度众生的学识、精神、耐心、耐力,不厌其烦地把自己掌握的数学知识和领悟到的思想、精神传递给学生。惟有坚持“诲人不倦”的精神,我们才能在尽教书育人职责的同时,实现自己的人生价值,找到人生乐趣。
愿我们数学教师真心诚意地热爱教研,专心致志地研究教学,在教学过程中,随时随地思考,随时随地发现,随时随地实践,随时随地体验,随时随地领悟,随时随地反省。这是教研的真谛,也是教好书、做好人的真谛。
高中数学总结 篇6
一、问题的提出
相比较于义务教育阶段的课堂教育改革,高中数学课堂教学改革起步相对较晚,对数学素质教育和创新教育的研究取得了一定的成绩,但这更多地是停留在理念和方法上,缺少可操作性的内容,对数学课堂教学改革也有很多地方取得了较好的效果,如上海育才中学的“读读、议议、讲讲、练练”教学法、岳阳县一中的“四环递进”教学法、长沙教科所的“六环节自学辅导型教学法”等,本地区已取得较为突出成绩的有醴陵二中“高中数学分层学导式教学法”等,这些教学法都有较为具体的操作程序,尤其是非常注重学生自学能力的培养,通过这些教学方法的改革,取得了显著的成绩,培养了一批年轻教师,形成了颇具特色的课堂教学模式,发行了较有影响的学习资料,但这种较为单一的课堂教学方式对整个高中的数学教学而言毕竟还是有一定的局限性,不同的内容应该采用不同的教学方法。
随着高中课程改革的不断深入,当前高中数学课程内容越来越丰富,单一的一种课堂教学模式已远远不能满足课程的需要。我们试图在借鉴已取得的先进经验的基础上,运用科学的教育理念和教学思想,结合新一轮高中课程改革的要求,通过对高中教学课程内容的分析,形成针对不同课型、内容、学生的教学方式,确定不同的教学策略,并使之规范化、系统化、科学化,从而更好地推动高中教学的课堂教学改革。
教无定法,教亦有法,就高中数学课堂教学而言,如何让学生有效掌握数学基本知识技能,如何培养学生基本数学素养及基本数学能力,这是数学课堂教学永恒不变的主题。新课程的推行及新课程理念的确立给传统的数学课堂教学带来了根本性的冲击。在这种新形势下,如何更好的实现新旧理念的接轨,如何更好的规范数学课堂教学构建一套“形变而神凝”(课堂形式多变——针对课堂教学内容及对象的不同、鼓励个性发展,而课堂教学基本思想不变)的课堂教学模式,寻求不同的教学策略,对规范数学课堂教学、培养学生个性及能力、大面积提高教学质量极为必要,这应成为一个主要的`研究方向。
二、理论依据
建构主义学习理论:建构主义学习理论认为,学习是在教师的指导下,以学生为中心的学习,学习过程是主动建构知识的过程,学习应是一个交流合作的互动过程,学生掌握能解决问题的程序任务比掌握知识内容更重要。因此,教学中必须要充分调动学生的积极性,教师应该指导学生完成学习任务,达成学生目标,形成知识系统。
高中数学新课程的教学理念:数学教学活动应是学生经历“教学化”、“再创生”的活动过程,数学教学活动应帮助学生构建发展认识结构,教学活动是师生的互动过程,有效的教学是引导学生的学习,激发学生自己学习,帮助学生通过自己的思考建立起自己对教学的理解力。因此,教师要转变自己的角色和心理定位,教师不只是知识的讲授者,还应是课堂教学的设计者、引导者,组织者和学生学习的合作者、评判者。
认知学教学理论:认知学教学理论的代表人物加涅认为:不管教学是否存在,学习都会发生,但可以通过教学来影响学习,通过教学规划虽不会导致学习的发生,但有助于学习者的学习,同时指出教学方法包括教材呈现的方式、师生相互作用的方式和教学媒体的选择与运用等,教师应根据不同的学习类型选取不同的
教学方法。
三、研究目标:
①对高中教学内容的课型形成一个较为科学、系统的划分,并形成界定标准。 ②针对不同课型构建一个开放、动态、完善、可操作性的教学模式系统。 ③提高教师的教学研究能力,真正做到通过研究提高教学质量,减轻教师负担的目的,形成一支科研型的教师队伍。
④通过改进教学方法,激发学生学习兴趣,培养学生自学能力、迁移能力,提高学生分析问题和解决问题的能力,掌握科学的学习方法,形成良好的思维习惯,全面开发学生潜能,培养创新意识和创新能力。
四、研究内容:
(一)对高中教材分章节、模块进行研究,寻找高中数学知识的呈现方式、知识间的内在联系,研究教材的功能发挥及使用方法。
(二)高中数学教学课型的界定及标准,特别是新授内容中概念课课型的界定。
(三)探求高中数学新授课、复习课、试卷讲评课的教学策略研究,新授课中教学基本原理的认知与基本原理的应用教学策略研究。
1、从高中数学教材入手,通过对知识体系、新知呈现方式、内容的时效性等多角度的研究和分析,结合目前高中的教学实际,考虑以上课的时效性为一级标准,将数学课型分成四大类:新授课、单元复习小结课、高三复习课、试卷讲评课,以新授内容的性质和呈现方式为二级标准,将新授课分为数学基本原理的认知与构建、数学基本原理的应用与深化、数学基本概念新授课等课型。
2、针对不同课程构建不同的教学流程,强调学生的主体地位,特别注重学生思维的充分暴露,强化知识体系的建立,确定明确的教学方法和教学手段,有力地促进学生更加主动地学习,较好地构建知识体系,形成良好的思维品质。下面为拟采用的教学方法:
A、关于数学基本原理的认知与建立的教学主要采取“导引探究式”教学方法。主要教学流程为
⒈创设问题情境,诱导学生发现、提出问题,激发探究欲望
⒉创设思维情境,启导学生发现解决问题的思路和方法,培养学生创新思维能力
⒊释疑解惑,引导学生独立解决问题,培养逻辑推理能力
⒋精讲总结,理性归纳,使学生形成新的认知结构
⒌精心设计变式分层练习,使学生在运用知识中形成技能,培养学生迁移与创新的能力
B、关于数学基本原理的应用及深化的教学主要采取“演练互议式”教学方法,基本做法是:(1)出示问题,(2)学生板演(3)师生评议:(4)师生共同小结。
C、数学基本概念、公式的起始课采用读、导、演、拓教学方法,主要流程为:(1)学生自读(2)教师导引(3)学生演练(4)拓展深化。
D、关于数学知识结构(小结与复习)的教学主要采取“问题模块链接式”教学模式,主要流程为:(1)设计问题链,根据知识结构的特点及学生的掌握情况设计问题链,这个问题链一方面要能充分体现知识点之间、知识模块之间的横、纵向联系,问题要设置在点与点的交汇处,另一方面还要注意从知识模块的背景、内涵与外延、应用等方面出发以充分体现知识模块的地位和作用;(2)师生小结,
由问题链的解决梳理相关知识,形成体系,总结方法(3)迁移训练,通过设计综合练习题落实双基,形成能力。
E、高三复习课主要采用“四环递进教学法”,主要环节为:提出问题,自学练习,评议小结,课堂小结;采用分层递进的方式教学。
F、关于试卷讲评课主要采用“多维互动式”教学方法,主要环节为:
a.小组合作解决一般性问题;
b.师生合作,学生互问互答,老师点拨解决中等以上难度题;
c.教师讲评,教师讲解普遍性问题,做好方法的归纳小结;
d.评后反思,进行补偿性练习;
(四)研究不同的教学方式、教学流程与课堂教学效果、学生学习能力的关系,并提出改进的方法与措施。
①高中数学知识的呈现方式、知识间的内在联系、教材的功能发挥及使用方法。
②高中数学教学课型的界定标准,特别是新授内容中概念课课型的界定。 ③高中教学新授课、复习课、试卷讲评课的教学策略研究,新授课中教学基本原理的认知与基本原理的应用教学策略研究。
④不同的教学方式、教学流程与课堂教学效果、学生学习能力的关系研究。
五、研究假设
1、从高中数学教材入手,通过对知识体系、新知呈现方式、内容的时效性等多角度的研究和分析,结合目前高中的教学实际,考虑以上课的时效性为一级标准,将数学课型分成四大类:新授课、单元复习小结课、高三复习课、试卷讲评课,以新授内容的性质和呈现方式为二级标准,将新授课分为数学基本原理的认知与构建、数学基本原理的应用与深化、数学基本概念新授课等课型。
2、针对不同课程构建不同的教学流程,强调学生的主体地位,特别注重学生思维的充分暴露,强化知识体系的建立,确定明确的教学方法和教学手段,有力地促进学生更加主动地学习,较好地构建知识体系,形成良好的思维品质。下面为拟采用的教学方法:
A、关于数学基本原理的认知与建立的教学主要采取“导引探究式”教学方法。主要教学流程为
⒈创设问题情境,诱导学生发现、提出问题,激发探究欲望
⒉创设思维情境,启导学生发现解决问题的思路和方法,培养学生创新思维能力
⒊释疑解惑,引导学生独立解决问题,培养逻辑推理能力
⒋精讲总结,理性归纳,使学生形成新的认知结构
⒌精心设计变式分层练习,使学生在运用知识中形成技能,培养学生迁移与创新的能力
B、关于数学基本原理的应用及深化的教学主要采取“演练互议式”教学方法,基本做法是:(1)出示问题,(2)学生板演(3)师生评议:(4)师生共同小结。
C、数学基本概念、公式的起始课采用读、导、演、拓教学方法,主要流程为:(1)学生自读(2)教师导引(3)学生演练(4)拓展深化。
D、关于数学知识结构(小结与复习)的教学主要采取“问题模块链接式”教学模式,主要流程为:(1)设计问题链,根据知识结构的特点及学生的掌握情况设计问题链,这个问题链一方面要能充分体现知识点之间、知识模块之间的横、
纵向联系,问题要设置在点与点的交汇处,另一方面还要注意从知识模块的背景、内涵与外延、应用等方面出发以充分体现知识模块的地位和作用;(2)师生小结,由问题链的解决梳理相关知识,形成体系,总结方法(3)迁移训练,通过设计综合练习题落实双基,形成能力。
E、高三复习课主要采用“四环递进教学法”,主要环节为:提出问题,自学练习,评议小结,课堂小结;采用分层递进的方式教学。
F、关于试卷讲评课主要采用“多维互动式”教学方法,主要环节为: a.小组合作解决一般性问题;
b.师生合作,学生互问互答,老师点拨解决中等以上难度题;
c.教师讲评,教师讲解普遍性问题,做好方法的归纳小结;
d.评后反思,进行补偿性练习;
六、研究方法
本课题以行动研究为主,以案例研究、比较研究为辅,主要通过高中三个年级的教师通过统一的安排,分别对教材进行分类研究,确定教学策略,形成系列教案和教学课件。
参考文献:
1、新课程的教学改革,张晖编著,首都师范大学出版社,20xx年
2、《基于自主性学习的教学模式》,孟庆男,课程·教材·教法,20xx.2
3、《论数学课题探究教学》,何李来、李森,课程·教材·教法,20xx.3
高中数学总结 篇7
一、集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性如:世界上最高的山
(2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{ } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+整数集Z 有理数集Q 实数集R
1) 列举法:{a,b,c}
2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR| x-3>2} ,{x| x-3>2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集含有有限个元素的集合
(2) 无限集含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{x|x=-5}
二、集合间的基本关系 1.“包含”关系—子集
注意:AB有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
B或BA 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x-1=0} B={-1,1}“元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。AA
②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)
③如果 AB, BC ,那么 AC ④ 如果AB 同时 BA 那么A=B
3. 不含任何元素的'集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
nn-1有n个元素的集合,含有2个子集,2个真子集
例题:
下列四组对象,能构成集合的是 () A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数
2.集合{a,b,c }的真子集共有个
3.若集合M={y|y=x-2x+1,xR},N={x|x≥0},则M与N的关系是 .
4.设集合A=xx2,B=xxa,若AB,则a的取值范围是
5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,
两种实验都做错得有4人,则这两种实验都做对的有人。
6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.
7.已知集合A={x| x+2x-8=0}, B={x| x-5x+6=0}, C={x| x-mx+m-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值
高中数学总结 篇8
期末工作总结
转眼间一学期的教学工作已接近尾声, 为了更好地完成今后的教学工作,总结经验、吸取教训,本人就本学期的教学工作总结如下:
一、教育教学工作和其他方面
这学期,本人担任了高一年级两个班级的数学教学工作,取得了较好的教学成绩,得到了所担任班级学生的很好评价和充分爱戴。在本学期的教学工作中,所有教师都面临着全面贯彻和落实学校的新教育教学方法的重任,在工作中通过自身的学习研究、教师的合作交流及学生的充分配合,有效的将学校的新教学方针得以充分落实和发挥。 “授人以鱼,不如授人以渔。”反映在教学上,也就是说,教师不仅要教学生学会,更重要的是要学生会学。这就需要教师更新观念,改变教法,把学生看作学习的主体,逐步培养和提高学生的自学能力,思考问题、解决问题的能力,使他们能终身受益。下面,浅谈自己的几点做法。
1、在课前预习中培养学生的自学能力
课前预习是教学中的一个重要的环节,从教学实践来看,学生在课前做不做预习,学习的效果和课堂的气氛都不一样。为了抓好这一环节,我常要求学生在预习中做好以下几点,促使他们去看书,去动脑,逐步培养他们的预习能力。①、本小节主要讲了哪些基本概念,有哪些注意点?②、本小节还有哪些定理、性质及公式,它们是如何得到的,你看过之后能否复述一遍?③、对照课本上的例题,你能否回答课本中的练习。④、通过预习,你有哪些疑问,把它写在“数学摘抄本”上。也不要求学生应该记什么不应该记什么,而是让学生自己通过学习和练习区体会。
少数学生的问题具有一定的代表性,也有一定的灵活性。这些要求刚开始实施时,是有一定困难的,有些学生还不够自觉,通过一个阶段的实践,绝大多数学生能养成良好的习惯。另外,在课前预习时,我有时要求学生在学习过程中进行角色转移,站在教师的角度想问题,这叫换位思考法。在学习每一个问题,每项学习内容时,先让学生问问自己,假如我是老师,我是否弄明白了?怎样才能给别的同学讲清楚?这样,学生就会产生一种学习的内驱力,对每一个概念,每一个问题主动钻研,积极思考,自觉地把自己放在了主动学习的位置。如在讲“数列在分期付款中的应用”时,我把这节内容留给学生课前思考,他们积极发挥主观能动性,准备了大量不同类型的实例和有关的练习。加深了对问题的理解。换位教学法,不仅能改变传统的教师讲,学生听的旧模式,而且还激发了学生课前积极思考主动探索的兴趣。
2、在课堂教学中培养学生的自学能力
课堂是教学活动的主阵地,也是学生获取知识和能力的主要渠道。作为数学教师改变以往的“一言堂”“满堂灌”的教学方式显得至关重要,而应采用组织引导,设置问题和问题情境,控制以及解答疑问的方法,形成以学生为中心的生动活泼的学习局面,激发学生的创造##,从而培养学生的解决问题的能力。
在尊重学生主体性的同时,也要考虑到学生之间的个体差异,要因材施教,发掘出每个学生的学习潜能,尽量做到基础分流,弹性管理。在教学中我采用分类教学,分层指导的方法,使每一位同学都能够稳步地前进。调动他们的学习积极性。对于问题我没有急于告诉学生答案,让他们在交流中掌握知识,在讨论中提高能力。尽量让学生发现问题,尽量让学生质疑问题,尽量让学生标新立异。
在数学教学中有大量的解题活动,包括常规问题和非常规问题。教学实践的经验已经证明,题海战术不可取,重要的是交给学生数学解题的思维策略在解题活动中进行思维策略的训
练。这种训练应包括解题过程的'规范训练,常规问题的模式训练,非常规问题化归为常规问题的转换训练等。
在课堂教学中,我的一个主要的教学特征就是:给学生足够的时间,这时间包括学生的思考时间、演算时间、讨论时间和深入探究问题的时间,在我的课堂上可以看到更多的是学生正在积极的思考、热烈的讨论、亲自动脑,亲自动手,不会将问题结果完全寄托于老师的传授,而是在积极主动的探索。
现代认知心理学家J.S布鲁纳说过:“探索是数学教学的生命线。”他所倡导的发现学习的教学模式不是把学习材料直接呈现给学生,而是只给一些提示性的线索,要学生自己通过积极主动的探索活动来学习知识,掌握策略,解决问题,这对培养学生解决问题的能力和创造性具有更加积极的意义。
3、在课后作业、反馈练习中培养学生的自学能力
课后作业和反馈练习、测试是检查学生学习效果的重要手段。抓好这一环节的教学,也有利于复习和巩固旧课,还锻炼了学生的自学能力。在学完一节、一课、一单元后,让学生动手“列菜单”,归纳总结,要求学生尽量自己独立完成,以便正确反馈教学效果,通过一系列的实践活动,把每个学生的学习积极性都调动起来,成为教学活动的参与者和组织者。
学生自学能力的培养不是一朝一夕所能形成的,是要长期坚持的。科学安排,课前、课堂、课后三者结合,留给学
生充分的自学机会。真正把学生推向主动地位,使其变成学习的主人,我想这也是每一位教育工作者所梦寐以求的结果吧。
二、思想工作日常工作方面
俗话说:“活到老,学到老。”本人一直在各方面严格要求自己,努力地提高自己各方面的素质,以便使自己更快更好地适应社会发展的形势。通过阅读大量的道德修养书籍,勇于解剖自己,分析自己,正视自己,提高自身素质。在学校组织的青年教师教学基本技能大赛和优质课评选活动中,积极参与,积极宣传,积极帮助计算机水平不高的教师制作教学课件以提高活动和大赛的水平。
工作期间本人严格遵守学校的各项规章制度,不迟到、不早退。在工作中,尊敬领导、团结同事,正确处理与领导、同事之间的关系。平时,勤俭节约、任劳任怨、对人真诚、热爱学生、人际关系和谐融洽,从不闹无原则的纠纷,处处以一名人民教师的要求来规范自己的言行,积极地培养自己的综合素质和能力。
三、业务进修方面
随着新课程改革的逼近和新课程改革对教师业务能力要求的提高,本人在工作之余,抽出部分时间通过网络积极参加全国教师继续教育培训学习,并阅读大量有关教育和教学的专业书籍,而且也不断地充实和提高自己的计算机水平,充分地掌握多媒体课件制作以适应以后的新课程教学,并主动帮助同事们学习和制作教学课件。
高中数学总结 篇9
本学期数学教研组全体教师坚决贯彻执行学校工作计划,以三处工作计划为依托,认真落实学期初教研组工作计划,在全组教师的共同努力下,顺利完成了各项工作任务,取得了较好的工作成效。
工作完成情况
1、常规工作
学期初我们根据学校工作和三处的工作计划,精心设计了学期的教研活动计划。本学期教研组内公开课13节,全市公开课4节,各位老师精心准备,积极参与,都较好的完成了各项任务,取得了积极成果,得到了较好的.评价。
我们积极参与学校各项常规管理与检查评比工作,坚持做好教师的“六认真”的检查评比与督促工作。
2、教学案整理
我组教师根据学校的要求,在高一、高二率先开展了学案的整理编辑工作,在教务处的直接领导下,在备课组长的带领下,经过全组教师的积极努力,较好地完成了学科教学任务和教学案的整理工作。为我校今后的教学和资料的积累、整合奠定了基础。
3、教学研究和获奖情况
本学年我组教师在教学研究论文发表方面又取得了新的突破,全组教师共有13人、44篇论文在省市论文评比中获奖或在省级以上报纸杂志公开发表。其中有省级以上论文37篇,市级论文7篇,沈书龙老师个人有18篇文章公开发表,是全组教师的榜样;吴文辉老师的文章《高中学生疲劳调查与研究》在“师陶杯”评比中获得二等奖。
高中数学总结 篇10
1、函数性质
幂函数的、图象一定会出现在、第一象限内,一定不会出现在、第四象限,至于是否出现在第二、三象限内,要看函数的、奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与、坐标轴相交,则交点一定是、原点.
正值性质
当α>0时,幂函数y=x、α有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是、增函数;
c、在第一象限内,α>1时,、导数值逐渐增大;α=1时,导数为、常数;0<α<1时,导数值逐渐减小,趋近于0;
负值性质
当α<0时,幂函数y=x、α有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是、减函数;(内容补充:若为X、-2,易得到其为、偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)
c、在、第一象限内,有两条渐近线(即坐标轴),、自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
零值性质
当α=0时,幂函数y=x、a有下列性质:
a、y=x、0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。
2、函数特性
对于α的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
α为约分数
如果α=p/q,且p/q为、既约分数(即p,q、互质),q和p都是、整数,则x^(p/q)=q次根号下(x的p次方)。如果q是、奇数,函数的、定义域是R;如果q是、偶数,函数的`、定义域是[0,+∞)。
α为负整数
当指数α是、负整数时,设α=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在、偶数次的根号下而不能为负数,那么我们就可以知道:
α小于0时,x不等于0;
α的分母为偶数时,x不小于0;
α的分母为奇数时,x取R。
3、函数判定
幂函数的一般形式是y=x,其中,n可为任何实数,但中学阶段仅研究n为有理数的情形,这时可表示为y=x^(m/k),其中m∈Z,k∈N*,且m,k互质。特别,当k=1时为整数指数幂。
(1)当m,k都为正奇数时,如y=x,y=x,y=x^(3/5)等,定义域、值域均为R,为奇函数;
(2)当m为负奇数,k为正奇数时,如y=x^(-1)=1/x,y=x^(-3)=1/x,y=x^(-3/5)等,定义域、值域均为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),为奇函数;
(3)当m为正奇数,k为正偶数时,如y=x^(1/2),y=x^(3/4)等,定义域、值域均为[0,+∞),为非奇非偶函数;
(4)当m为负奇数,k为正偶数时,如y=x^(-1/2),y=x^(-3/4)等,定义域、值域均为(0,+∞),为非奇非偶函数;
(5)当m为正偶数,k为正奇数时,如y=x,y=x^(2/3)等,定义域为R、值域为[0,+∞),为偶函数;
(6)当m为负偶数,k为正奇数时,如y=x^(-2)=1/x,y=x^(-2/3)等,定义域为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),值域为(0,+∞),为偶函数。、[1]
4、讨论分析
由于x大于0是对α的、任意取值都有意义的,因此下面给出幂函数在各、象限的各自情况。可以看到:
(1)所有的图像都通过(1,1)这点.(α≠0)、α>0时、图象过点(、0,0)和(1,1)。
(2)、单调区间:
当α为整数时,α的正负性和奇偶性决定了函数的单调性:
①当α为正奇数时,图像在定义域为R内单调递增;
②当α为正偶数时,图像在定义域为第二象限内单调递减,在第一象限内单调递增;
③当α为负奇数时,图像在第一三象限各象限内单调递减(但不能说在定义域R内单调递减);
④当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。
当α为分数时,α的正负性和分母的奇偶性决定了函数的单调性:
①当α>0,分母为偶数时,函数在第一象限内单调递增;
②当α>0,分母为奇数时,函数在第一、三象限各象限内单调递增;
③当α<0,分母为偶数时,函数在第一象限内单调递减;
④当α<0,分母为奇数时,函数在第一、三象限各象限内单调递减(但不能说在定义域R内单调递减);
(3)当α>1时,幂函数图形下凹(竖抛);
当0<α<1时,幂函数图形上凸(横抛);
当α<0时,图像为双曲线。
(4)在(0,1)上,幂函数中α越大,函数图像越靠近x轴;在(1,﹢∞)上幂函数中α越大,函数图像越远离x轴。
(5)当α<0时,α越小,图形倾斜程度越大。
(6)显然幂函数无界限。
(7)α=2n(n为整数),该函数为偶函数、{x|x≠0}。
高中数学总结 篇11
开学这么长时间以来,第一次像这样对自己的学习做大型总结,经过第一次月考和刚结束不久的期中考试,我对自己的成绩有了一定的了解,更深深体会了高中学习生活的不易,从中我也总结了一些学习方法,也希望我的成绩能进一步提高,某某届高一数学学习心得。
数学被称为科学的皇后,从小学开始,数学就是我的强项,但这次的考试成绩却让我大失所望,我总结出了下列几点问题:
1.概念及做题方法不清,看似学会了,其实只是表面的东西,没有深入,更没有体会其中的内涵。
2.反应能力、逻辑思维和做题速度还需提高,要保证做对,尤其是基础题,会做的一定要做对,不要钟爱于难题,基础题占大分。
3.粗心大意是一个致命的毛病,要在平常的学习生活中慢慢纠正,养成良好的学习习惯,注重细节。
说的全是空话,要行动起来才有意义。
对于学好数学第一点就是要有兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”没有兴趣就要培养兴趣,而学生大多对数学没兴趣是因为成绩不好,成绩越不好,就越没有兴趣,老师的责骂也打击着学生的自尊心,这便形成了一个恶性循环。老师对学生的态度和教育方法严重影响着学生的学习成绩。我认为老师的鼓励和发自内心的温暖的话语会使学生有很大的改变,这个年龄段的学生不善于表达感情,也许经常会说到那个老师怎么怎么不好,但心里却是充满感激,也希望老师能从一个正面的角度评价学生。
学好数学第二点就是要有好的学习方法。著名社会活动家,联合国教科文组织总干事埃德加·富尔在其所著《学生存》一书中指出:未来的文盲不单是指那些不识字的人,而是更广泛地指那些不会学习的人,微软公司总裁比尔·盖茨也说:在未来的世界,财富将首先依赖于人们的学习与创新能力,对于那些拥有学习与创新能力的人来说,新时代是一个充满机遇与希望的世界,这两位著名人物的话告诉我们,随著二十一世纪信息时代的降临,学习与创新能力将成为人们赖以生存和发展的最重要条件,现在的中学生,将要在二十一世纪大显身手,为了迎接二十一世纪的挑战,我们既要不断提高自己的科学知识水平,又要逐步学会学习和研究的方法,提高学习和创新的能力。
预习和复习是最重要的学习方法,每天晚上预习第二天的内容,有助于上课时能进一步理解学习内容,不会存在听不懂的现象,更好地跟着老师的思维走,更深一步的探究,你会发现数学的奥秘。但有很多同学不会预习,不知道从哪里入手,只知道把书看一遍,把黑体句子记住,根本没有深入思考,更不用说自主探究、提出有价值的问题了,所以才害怕老师问的深层次的问题,哪怕只是基础,同学们都很难表述清楚,这是应该改进的问题。复习是为了巩固当天学习的内容,不至于刚学就忘记,预习时可根据复习内容把知识点结合在一起,有利于记忆。上课听讲也是非常重要的环节,要把上课的45分钟充分利用,尽可能地吸收老师传授的知识,思想要跟着老师走,只要把握好了这45分钟,就不怕学不会,课间最好不要继续研究数学,应该适当地放松,劳逸结合,而且课间教学楼声音嘈杂,容易使思维中断,不利于思考。作业也是对每天学习内容的.一个检测,最好是先把课本复习一遍,把知识点掌握好,做起作业来会更顺畅,更有利于记忆知识点。现在许多同学是为了完成作业而写作业,这样没有任何意义。除了作业还应做适当的课外练习,增加做题量,多见题型,来提高做题效率,不能只顾课本和作业。我们还要准备一个纠错本,把考试失误的题和易错的题记录下来,作为复习的最好资料,也防止以后会错同样的题
第三点就是学习态度。许多同学没有摆正学习态度,感觉总是为了别人而学习,有了好的学习方法后就要养成习惯,要有毅力去坚持把它做好,要有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以领略到数学的奥妙,体会到学习数学获取成功的喜悦。毅力是第一重要的,学习方法是第二重要的。在现实生活中,全中国仍有70%以上的占第一的学生虽然占了第一,但他们并不是毅力最强的,或者说学习方法生活方式不是最好的。爱迪生不是说过“天才是百分之九十九的汗水加上百分之一的灵感”吗?实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。数学思想方法是知识、技能转化为能力的桥粱,是数学结构中强有力的支柱,在中学数学课本里渗透了函数的思想,方程的思想,数形结合的思想,逻辑划分的思想,等价转化的思想,类比归纳的思想,介绍了配方法、消元法、换元法、待定系数法、反证法、数学归纳法等,在学好数学知识的同时,要下大力气理解这些思想和方法的原理和依据,并通过大量的练习,掌握运用这些思想和方法解决数学问题的步骤和技巧。知识是能力的基础,要切实抓好基础知识的学习让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。我希望能够通过我和老师的共同努力,更进一步的深入数学,了解数学,提高数学成绩,为未来打好基础。
高中数学总结 篇12
20xx年6月24日——7月4日,我有幸参加了广东省教育局厅主办,xx师范大学承办的高中数学骨干教师培训。来自全省各地市的高中数学骨干教师进行了为期10天的培训,主要采用专题报告、讲座等形式进行理论学习。让我们得以与众多教授、名师面对面地座谈、交流,倾听他们对数学教学的理解,感悟他们的教育教学思想方法。这次培训内容丰富,安排合理,使我们受益匪浅。
(一)一流专家讲座,提升思想理念!
我们这次培训班听了xx与二师的知名教授及部分学校的名校长、名师的讲座,从师德、当前教育教学改革动向、教科研、课堂教学专题、教材解读、现代教育技术应用等多方面进行,各位知名专家、学者、特级教师从自己切身的经验体会出发,畅谈了他们对师德以及教学等教育教学各个领域的独特见解。让我们更清晰地意识到作为一个线的中学教师该如何看待自己所处的位置,该如何去提升自己的专业水平。在知识方面,我们深感知识学问浩如烟海,也深深地体会到教学相长的深刻内涵。教师要有精深的学科专业知识,广博的科学文化知识,丰富的教育和心理科学知识。知识结构要合理,当今的自然科学,社会科学和人文科学互相渗透,相互融合,只懂自己专业的知识是远远不够的,这一点我们在学习中体会很深。精深的专业知识是教师担任教学工作的基础。这就要求教师要扎实的掌握本学科的基础理论,基础知识以及相应的`技能,并运用自如。熟悉本学科的学习方法和研究方法,同时还要具备一定的与本学科相关的知识。学员们在这次培训中发现自己专业知识还很欠缺。只有掌握全面的学科知识才能在教学过程中高屋建瓴的处理好教材,把握住教材的难点,才能有对教材内容深入浅出的讲解。从而保证教学流畅地进行,使学生既学到知识,又掌握学习方法和发展能力。
(二)优秀学员论坛,提升学员理论水平!
在理论培训阶段,为了提升每位学员自身的理论水平,专家们都会预留一定的时间与学员们交流,学员们畅所欲言,许多提出的观点和问题,这些数学教学中的实际问题,引起全体学员的一致共鸣的同时,也得到专家们的重视,他们的回答也给了我们很好的启示,对于我们今后的教学有着积极的促进作用。
(三) 答疑解困,理论水平提高的源泉!
这次培训要求每个学员每天都要做笔记,在自己的博客上写反思,写心得体会,提出困惑。也为我们学习和交流提供了一平台。 这次理论培训,就自身更新优化而言,使学员们树立了终身学习的思想。通过培训,感觉以前所学的知识太有限了,看问题的眼光也太肤浅了。教师只有树立“活到老,学到老”的终身教育思想,才能跟上时代前进和知识发展的步伐,才能胜任复杂而又富有创造性的教育工作。只有不断学习,不断充实自己的知识,不断更新自己的教育观念,不断否定自己,才能不断进步,拥有的知识才能像‘泉水”般沽沽涌出,而不只是可怜的“一桶水”了。
(四)、相互交流,共同提高!
本次培训,汇聚了全省各地市的骨干教师,每位培训教师都有丰富的教学经验,教学的外部条件也非常相似,但也存在着许多的差异,为我们之间的相互交流提供了很好的一个交流平台。因此,成员之间的互动交流成为每位培训人员提高自己教学业务水平的一条捷径。在培训过程中,学员们在交流过程中,了解到各区县的新课程开展情况,并且注意到他们是如何处理新课程中遇到的种种困惑,以及他们对新课程教材的把握与处理。在培训中,我们不断地交流,真正做到彼此之间的相互促进,共同提高。
10天的培训是短暂的,但是留给我的记忆与思考是永恒的,通过这次培训,使我 提高了认识,理清了思路,找到了自身的不足之处以及与名教师的差距所在,对于今后如何更好的提高自己必将起到巨大的推动作用,我将以此为起点,让“差距”成为自身发展的源动力,不断梳理与反思自我,促使自己不断成长。
高中数学总结 篇13
一、配方法
配方法是对数学式子进行一种定向变形(配成完全平方)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用裂项与添项、配与凑的技巧,从而完成配方。有时也将其称为凑配法。
最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
二、换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
三、待定系数法
要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)g(x)的充要条件是:对于一个任意的a值,都有f(a)g(a);或者两个多项式各同类项的系数对应相等。
待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。
使用待定系数法,它解题的基本步骤是:
第一步,确定所求问题含有待定系数的'解析式;
第二步,根据恒等的条件,列出一组含待定系数的方程;
第三步,解方程组或者消去待定系数,从而使问题得到解决。
如何列出一组含待定系数的方程,主要从以下几方面着手分析:
①利用对应系数相等列方程;
②由恒等的概念用数值代入法列方程;
③利用定义本身的属性列方程;
④利用几何条件列方程。
比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。
四、定义法
所谓定义法,就是直接用数学定义解题。数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。
定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。简单地说,定义是基本概念对数学实体的高度抽象。用定义法解题,是最直接的方法,本讲让我们回到定义中去。
五、数学归纳法
归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。
数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定对任何自然数(或nn且nN)结论都正确。由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。
运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。
运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
六、参数法
参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。
辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。
参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。
七、反证法
与前面所讲的方法不同,反证法是属于间接证明法一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:若肯定定理的假设而否定其结论,就会导致矛盾。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。
反证法所依据的是逻辑思维规律中的矛盾律和排中律。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的矛盾律两个互相矛盾的判断不能同时都假,简单地说A或者非A,这就是逻辑思维中的排中律。反证法在其证明过程中,得到矛盾的判断,根据矛盾律,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以否定的结论必为假。再根据排中律,结论与否定的结论这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。
反证法的证题模式可以简要的概括我为否定推理否定。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是否定之否定。应用反证法证明的主要三步是:否定结论推导出矛盾结论成立。实施的具体步骤是:
第一步,反设:作出与求证结论相反的假设;
第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;
第三步,结论:说明反设不成立,从而肯定原命题成立。
在应用反证法证题时,一定要用到反设进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫归谬法如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫穷举法。
在数学解题中经常使用反证法,牛顿曾经说过:反证法是数学家最精当的武器之一。一般来讲,反证法常用来证明的题型有:命题的结论以否定形式、至少或至多、唯一、无限形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。
高中数学总结 篇14
通过这次期中考试,我发现我在数学上存在许多的不足之处,虽然我平时的成绩一直挺好。初中的老师就对我们教导:一份努力一分收获。可是,对于我来说,只想不劳而获,在上个月中我松懈了额许多。
这次考试之前我就预料到了数学会考得不好,我也知道数学为什么会考得不好。
其一:对基础知识掌握的不够透彻;
其二:在数学这一学科上没有花时间;
其三:初中的`数学基础不够扎实,以上种种原因正是导致我数学考得不好的主要原因。
考试之后,我感到非常的困惑。虽然我心中仍然坚定着自己的理想,但我不知道这会不会是空想。老师,我很想问你,你的最初梦想恐怕不是当老师吧?那你曾经迷茫过吗?其实经过高一这大半个学期,我没怎么努力,因为我看到许多努力的同学起早贪黑的反而没有那些不学无术的同学考得好,我怕我的努力没有成果,反而使自己质疑自己起来?
有时候看到父母微弯的身板,我也想过要好好的读书,可是这个想法会和现状起冲突,那么,我只有什么都不做。曾经,也有人问我喜欢什么,虽然那时候我还很小,但我记得当时我想都没想就回答了读书,上了高中后,许多陌生的面孔也熟悉了起来。正是熟悉的面孔反而带给了我陌生的感觉。
【高中数学总结】相关文章:
高中数学总结03-03
高中数学教学总结11-19
高中数学总结15篇05-16
高中数学教学总结20篇03-11
高中数学教学总结15篇05-04
高中数学教学总结(15篇)05-04
高中数学教研工作总结12-14
高中数学教研组工作总结10-24
高中数学教学工作总结09-03
高中数学老师教学总结12-21